5,976 research outputs found

    Long-range behavior of the optical potential for the elastic scattering of charged composite particles

    Get PDF
    The asymptotic behavior of the optical potential, describing elastic scattering of a charged particle α\alpha off a bound state of two charged, or one charged and one neutral, particles at small momentum transfer Δα\Delta_{\alpha} or equivalently at large intercluster distance ρα\rho_{\alpha}, is investigated within the framework of the exact three-body theory. For the three-charged-particle Green function that occurs in the exact expression for the optical potential, a recently derived expression, which is appropriate for the asymptotic region under consideration, is used. We find that for arbitrary values of the energy parameter the non-static part of the optical potential behaves for Δα→0\Delta_{\alpha} \rightarrow 0 as C1Δα+o (Δα)C_{1}\Delta_{\alpha} + o\,(\Delta_{\alpha}). From this we derive for the Fourier transform of its on-shell restriction for ρα→∞\rho_{\alpha} \rightarrow \infty the behavior −a/2ρα4+o (1/ρα4)-a/2\rho_{\alpha}^4 + o\,(1/\rho_{\alpha}^4), i.e., dipole or quadrupole terms do not occur in the coordinate-space asymptotics. This result corroborates the standard one, which is obtained by perturbative methods. The general, energy-dependent expression for the dynamic polarisability C1C_{1} is derived; on the energy shell it reduces to the conventional polarisability aa which is independent of the energy. We emphasize that the present derivation is {\em non-perturbative}, i.e., it does not make use of adiabatic or similar approximations, and is valid for energies {\em below as well as above the three-body dissociation threshold}.Comment: 35 pages, no figures, revte

    Three- and Four-Body Scattering Calculations including the Coulomb Force

    Full text link
    The method of screening and renormalization for including the Coulomb interaction in the framework of momentum-space integral equations is applied to the three- and four-body nuclear reactions. The Coulomb effect on the observables and the ability of the present nuclear potential models to describe the experimental data is discussed.Comment: Proceedings of the Critical Stability workshop, Erice, Sicily, October 2008, to be published in Few-Body System

    System Size and Centrality Dependence of the Electric Charge Correlations in A+A and p+p Collisions at the SPS Energies

    Full text link
    The Balance Function analysis method was developed in order to study the long range correlations in pseudo-rapidity of charged particle. The final results on p+p, C+C, Si+Si and centrality selected Pb+Pb collisions at sNN=17.2\sqrt{s_{NN}} = 17.2 GeV and the preliminary data at sNN=8.8\sqrt{s_{NN}} = 8.8 GeV are presented. The width of the Balance Function decreases with increasing system size and centrality of the collisions. This could suggest a delayed hadronization scenario.Comment: To appear in the proceedings of NPDC18, Prague, Czech Republic, 23-28 Aug. 200

    Triangle Diagram with Off-Shell Coulomb T-Matrix for (In-)Elastic Atomic and Nuclear Three-Body Processes

    Get PDF
    The driving terms in three-body theories of elastic and inelastic scattering of a charged particle off a bound state of two other charged particles contain the fully off-shell two-body Coulomb T-matrix describing the intermediate-state Coulomb scattering of the projectile with each of the charged target particles. Up to now the latter is usually replaced by the Coulomb potential, either when using the multiple-scattering approach or when solving three-body integral equations. General properties of the exact and the approximate on-shell driving terms are discussed, and the accuracy of this approximation is investigated numerically, both for atomic and nuclear processes including bound-state excitation, for energies below and above the corresponding three-body dissociation threshold, over the whole range of scattering angles.Comment: 22 pages, 11 figures, figures can be obtained upon request from the Authors, revte

    Precision preparation of strings of trapped neutral atoms

    Get PDF
    We have recently demonstrated the creation of regular strings of neutral caesium atoms in a standing wave optical dipole trap using optical tweezers [Y. Miroshnychenko et al., Nature, in press (2006)]. The rearrangement is realized atom-by-atom, extracting an atom and re-inserting it at the desired position with sub-micrometer resolution. We describe our experimental setup and present detailed measurements as well as simple analytical models for the resolution of the extraction process, for the precision of the insertion, and for heating processes. We compare two different methods of insertion, one of which permits the placement of two atoms into one optical micropotential. The theoretical models largely explain our experimental results and allow us to identify the main limiting factors for the precision and efficiency of the manipulations. Strategies for future improvements are discussed.Comment: 25 pages, 18 figure

    Cold Atom Physics Using Ultra-Thin Optical Fibers: Light-Induced Dipole Forces and Surface Interactions

    Get PDF
    The strong evanescent field around ultra-thin unclad optical fibers bears a high potential for detecting, trapping, and manipulating cold atoms. Introducing such a fiber into a cold atom cloud, we investigate the interaction of a small number of cold Caesium atoms with the guided fiber mode and with the fiber surface. Using high resolution spectroscopy, we observe and analyze light-induced dipole forces, van der Waals interaction, and a significant enhancement of the spontaneous emission rate of the atoms. The latter can be assigned to the modification of the vacuum modes by the fiber.Comment: 4 pages, 4 figure

    proton-deuteron elastic scattering above the deuteron breakup

    Get PDF
    The complex Kohn variational principle and the (correlated) hyperspherical harmonics method are applied to study the proton-deuteron elastic scattering at energies above the deuteron breakup threshold. Results for the elastic cross section and various elastic polarization observables have been obtained by fully taking into account the long-range effect of the Coulomb interaction and using a realistic nucleon-nucleon interaction model. Detailed comparison between the theoretical predictions and the accurate and abundant proton-deuteron experimental data can now be performed.Comment: 6 pages, 2 figure

    IN VIVO EVALUATION OF ANKLE LIGAMENT FORCES USING A FIBER OPTIC TRANSDUCER

    Get PDF
    INTRODUCTION: Successful injury prevention, treatment and rehabilitation require a clear understanding of ligament function and forces acting on these ligaments, especially for injuries to the lateral ankle ligaments, which are very common in many kinds of sports. Several authors (Bahr et al. 1998; Renström, et al., 1988; Sauer et al., 1978) investigated forces or tensile strength of the ligament talofibulare anterior (LTFA) in vitro. There is, however, a lack of information of investigations with direct measurement of forces in this structure. The aim of this study was to apply a fiber optic transducer in vivo in order to register forces in the LTFA during different natural movements of the ankle joint under varied load conditions
    • 

    corecore