1,074 research outputs found

    Distribution of velocities in an avalanche

    Full text link
    For a driven elastic object near depinning, we derive from first principles the distribution of instantaneous velocities in an avalanche. We prove that above the upper critical dimension, d >= d_uc, the n-times distribution of the center-of-mass velocity is equivalent to the prediction from the ABBM stochastic equation. Our method allows to compute space and time dependence from an instanton equation. We extend the calculation beyond mean field, to lowest order in epsilon=d_uc-d.Comment: 4 pages, 2 figure

    Super-rough phase of the random-phase sine-Gordon model: Two-loop results

    Full text link
    We consider the two-dimensional random-phase sine-Gordon and study the vicinity of its glass transition temperature TcT_c, in an expansion in small τ=(TcT)/Tc\tau=(T_c-T)/T_c, where TT denotes the temperature. We derive renormalization group equations in cubic order in the anharmonicity, and show that they contain two universal invariants. Using them we obtain that the correlation function in the super-rough phase for temperature T<TcT<T_c behaves at large distances as ˉ=Aln2(x/a)+O[ln(x/a)]\bar{} = \mathcal{A}\ln^2(|x|/a) + \mathcal{O}[\ln(|x|/a)], where the amplitude A\mathcal{A} is a universal function of temperature A=2τ22τ3+O(τ4)\mathcal{A}=2\tau^2-2\tau^3+\mathcal{O}(\tau^4). This result differs at two-loop order, i.e., O(τ3)\mathcal{O}(\tau^3), from the prediction based on results from the "nearly conformal" field theory of a related fermion model. We also obtain the correction-to-scaling exponent.Comment: 34 page

    Shock statistics in higher-dimensional Burgers turbulence

    Full text link
    We conjecture the exact shock statistics in the inviscid decaying Burgers equation in D>1 dimensions, with a special class of correlated initial velocities, which reduce to Brownian for D=1. The prediction is based on a field-theory argument, and receives support from our numerical calculations. We find that, along any given direction, shocks sizes and locations are uncorrelated.Comment: 4 pages, 8 figure

    Freezing Transition in Decaying Burgers Turbulence and Random Matrix Dualities

    Full text link
    We reveal a phase transition with decreasing viscosity ν\nu at \nu=\nu_c>0 in one-dimensional decaying Burgers turbulence with a power-law correlated random profile of Gaussian-distributed initial velocities \sim|x-x'|^{-2}. The low-viscosity phase exhibits non-Gaussian one-point probability density of velocities, continuously dependent on \nu, reflecting a spontaneous one step replica symmetry breaking (RSB) in the associated statistical mechanics problem. We obtain the low orders cumulants analytically. Our results, which are checked numerically, are based on combining insights in the mechanism of the freezing transition in random logarithmic potentials with an extension of duality relations discovered recently in Random Matrix Theory. They are essentially non mean-field in nature as also demonstrated by the shock size distribution computed numerically and different from the short range correlated Kida model, itself well described by a mean field one step RSB ansatz. We also provide some insights for the finite viscosity behaviour of velocities in the latter model.Comment: Published version, essentially restructured & misprints corrected. 6 pages, 5 figure

    Lattice Fluid Dynamics from Perfect Discretizations of Continuum Flows

    Full text link
    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes, and naturally live on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e. grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation, and is shown to represent the continuum flow exactly. For non-square cross sections we use a numerical iterative procedure to derive flow equations that are approximately perfect.Comment: 25 pages, tex., using epsfig, minor changes, refernces adde

    Avalanches in mean-field models and the Barkhausen noise in spin-glasses

    Full text link
    We obtain a general formula for the distribution of sizes of "static avalanches", or shocks, in generic mean-field glasses with replica-symmetry-breaking saddle points. For the Sherrington-Kirkpatrick (SK) spin-glass it yields the density rho(S) of the sizes of magnetization jumps S along the equilibrium magnetization curve at zero temperature. Continuous replica-symmetry breaking allows for a power-law behavior rho(S) ~ 1/(S)^tau with exponent tau=1 for SK, related to the criticality (marginal stability) of the spin-glass phase. All scales of the ultrametric phase space are implicated in jump events. Similar results are obtained for the sizes S of static jumps of pinned elastic systems, or of shocks in Burgers turbulence in large dimension. In all cases with a one-step solution, rho(S) ~ S exp(-A S^2). A simple interpretation relating droplets to shocks, and a scaling theory for the equilibrium analog of Barkhausen noise in finite-dimensional spin glasses are discussed.Comment: 6 pages, 1 figur

    Free-energy distribution of the directed polymer at high temperature

    Full text link
    We study the directed polymer of length tt in a random potential with fixed endpoints in dimension 1+1 in the continuum and on the square lattice, by analytical and numerical methods. The universal regime of high temperature TT is described, upon scaling 'time' tT5/κt \sim T^5/\kappa and space x=T3/κx = T^3/\kappa (with κ=T\kappa=T for the discrete model) by a continuum model with δ\delta-function disorder correlation. Using the Bethe Ansatz solution for the attractive boson problem, we obtain all positive integer moments of the partition function. The lowest cumulants of the free energy are predicted at small time and found in agreement with numerics. We then obtain the exact expression at any time for the generating function of the free energy distribution, in terms of a Fredholm determinant. At large time we find that it crosses over to the Tracy Widom distribution (TW) which describes the fixed TT infinite tt limit. The exact free energy distribution is obtained for any time and compared with very recent results on growth and exclusion models.Comment: 6 pages, 3 figures large time limit corrected and convergence to Tracy Widom established, 1 figure changed

    QCD as a Quantum Link Model

    Get PDF
    QCD is constructed as a lattice gauge theory in which the elements of the link matrices are represented by non-commuting operators acting in a Hilbert space. The resulting quantum link model for QCD is formulated with a fifth Euclidean dimension, whose extent resembles the inverse gauge coupling of the resulting four-dimensional theory after dimensional reduction. The inclusion of quarks is natural in Shamir's variant of Kaplan's fermion method, which does not require fine-tuning to approach the chiral limit. A rishon representation in terms of fermionic constituents of the gluons is derived and the quantum link Hamiltonian for QCD with a U(N) gauge symmetry is expressed in terms of glueball, meson and constituent quark operators. The new formulation of QCD is promising both from an analytic and from a computational point of view.Comment: 27 pages, including three figures. ordinary LaTeX; Submitted to Nucl. Phys.

    Two-Hole Bound States from a Systematic Low-Energy Effective Field Theory for Magnons and Holes in an Antiferromagnet

    Full text link
    Identifying the correct low-energy effective theory for magnons and holes in an antiferromagnet has remained an open problem for a long time. In analogy to the effective theory for pions and nucleons in QCD, based on a symmetry analysis of Hubbard and t-J-type models, we construct a systematic low-energy effective field theory for magnons and holes located inside pockets centered at lattice momenta (\pm pi/2a,\pm pi/2a). The effective theory is based on a nonlinear realization of the spontaneously broken spin symmetry and makes model-independent universal predictions for the entire class of lightly doped antiferromagnetic precursors of high-temperature superconductors. The predictions of the effective theory are exact, order by order in a systematic low-energy expansion. We derive the one-magnon exchange potentials between two holes in an otherwise undoped system. Remarkably, in some cases the corresponding two-hole Schr\"odinger equations can even be solved analytically. The resulting bound states have d-wave characteristics. The ground state wave function of two holes residing in different hole pockets has a d_{x^2-y^2}-like symmetry, while for two holes in the same pocket the symmetry resembles d_{xy}.Comment: 35 pages, 11 figure

    Interference in disordered systems: A particle in a complex random landscape

    Full text link
    We consider a particle in one dimension submitted to amplitude and phase disorder. It can be mapped onto the complex Burgers equation, and provides a toy model for problems with interplay of interferences and disorder, such as the NSS model of hopping conductivity in disordered insulators and the Chalker-Coddington model for the (spin) quantum Hall effect. The model has three distinct phases: (I) a {\em high-temperature} or weak disorder phase, (II) a {\em pinned} phase for strong amplitude disorder, and (III) a {\em diffusive} phase for strong phase disorder, but weak amplitude disorder. We compute analytically the renormalized disorder correlator, equivalent to the Burgers velocity-velocity correlator at long times. In phase III, it assumes a universal form. For strong phase disorder, interference leads to a logarithmic singularity, related to zeroes of the partition sum, or poles of the complex Burgers velocity field. These results are valuable in the search for the adequate field theory for higher-dimensional systems.Comment: 16 pages, 7 figure
    corecore