30,495 research outputs found
Relative periodic orbits in point vortex systems
We give a method to determine relative periodic orbits in point vortex
systems: it consists mainly into perform a symplectic reduction on a fixed
point submanifold in order to obtain a two-dimensional reduced phase space. The
method is applied to point vortices systems on a sphere and on the plane, but
works for other surfaces with isotropy (cylinder, ellipsoid, ...). The method
permits also to determine some relative equilibria and heteroclinic cycles
connecting these relative equilibria.Comment: 27 pages, 17 figure
Mode Competition in Dual-Mode Quantum Dots Semiconductor Microlaser
This paper describes the modeling of quantum dots lasers with the aim of
assessing the conditions for stable cw dual-mode operation when the mode
separation lies in the THz range. Several possible models suited for InAs
quantum dots in InP barriers are analytically evaluated, in particular quantum
dots electrically coupled through a direct exchange of excitation by the
wetting layer or quantum dots optically coupled through the homogeneous
broadening of their optical gain. A stable dual-mode regime is shown possible
in all cases when quantum dots are used as active layer whereas a gain medium
of quantum well or bulk type inevitably leads to bistable behavior. The choice
of a quantum dots gain medium perfectly matched the production of dual-mode
lasers devoted to THz generation by photomixing.Comment: First draft of a paper submitted to Phys Rev A. This version includes
an extended discussion about dual-mode lasers and recall some known results
about stability. Extended bibliograph
Hunting for Runaways from the Orion Nebula Cluster
We use Gaia DR2 to hunt for runaway stars from the Orion Nebula Cluster
(ONC). We search a region extending 45{\deg} around the ONC and out to 1 kpc to
find sources that overlapped in angular position with the cluster in the last
~10 Myr. We find ~17,000 runaway/walkaway candidates satisfy this 2D traceback
condition. Most of these are expected to be contaminants, e.g., caused by
Galactic streaming motions of stars at different distances. We thus examine six
further tests to help identify real runaways, namely: (1) possessing young
stellar object (YSO) colors and magnitudes based on Gaia optical photometry;
(2) having IR excess consistent with YSOs based on 2MASS and WISE photometry;
(3) having a high degree of optical variability; (4) having closest approach
distances well constrained to within the cluster half-mass radius; (5) having
ejection directions that avoid the main Galactic streaming contamination zone;
and (6) having a required radial velocity (RV) for 3D overlap of reasonable
magnitude (or, for the 7% of candidates with measured RVs, satisfying 3D
traceback). Thirteen sources, not previously noted as Orion members, pass all
these tests, while another twelve are similarly promising, except they are in
the main Galactic streaming contamination zone. Among these 25 ejection
candidates, ten with measured RVs pass the most restrictive 3D traceback
condition. We present full lists of runaway/walkaway candidates, estimate the
high-velocity population ejected from the ONC and discuss its implications for
cluster formation theories via comparison with numerical simulations.Comment: 22 pages, 10 figures, and 5 tables. Accepted for publication in Ap
Plastic deformation of rough rolling contact: An experimental and numerical investigation
Quantifying the surface roughness evolution in contacts is a crucial step in the fatigue prediction process. Surfaces are initially conditioned by the running-in process and later altered by surface fatigue. The aim of this study is to understand and predict the evolution of the micro-geometry in the first few over-rolling cycles. Numerical predictions are validated by experiments. A major difficulty in understanding surface degradation is the measurement of the surface roughness evolution at the relevant scales. A twin disc micro-test rig, called μMag, was specially designed for this kind of analysis. The μMag allows the “in situ” observation of changes in the disc surface during interrupted tests, thus avoiding dismounting the specimens, which is a major cause of inaccuracy. The new method also maintains the relative position of the two discs. The precision of the measurements allows one to use the initial surface micro-geometry as input for the numerical contact calculation. Thus, the plastic deformation of the surfaces can be measured during the first cycles and compared to the numerical prediction. Results show a very good agreement between numerical predictions and experimental measurements
Holomorphic Poisson Manifolds and Holomorphic Lie Algebroids
We study holomorphic Poisson manifolds and holomorphic Lie algebroids from
the viewpoint of real Poisson geometry. We give a characterization of
holomorphic Poisson structures in terms of the Poisson Nijenhuis structures of
Magri-Morosi and describe a double complex which computes the holomorphic
Poisson cohomology. A holomorphic Lie algebroid structure on a vector bundle
is shown to be equivalent to a matched pair of complex Lie algebroids
, in the sense of Lu. The holomorphic Lie algebroid
cohomology of is isomorphic to the cohomology of the elliptic Lie algebroid
. In the case when is a holomorphic Poisson
manifold and , such an elliptic Lie algebroid coincides with the
Dirac structure corresponding to the associated generalized complex structure
of the holomorphic Poisson manifold.Comment: 29 pages, v2: paper split into two, part 1 of 2, v3: two references
added, v4: final version to appear in International Mathematics Research
Notice
The IBIS view of the galactic centre: INTEGRAL's imager observations simulations
The Imager on Board Integral Satellite (IBIS) is the imaging instrument of
the INTEGRAL satellite, the hard-X/soft-gamma ray ESA mission to be launched in
2001. It provides diagnostic capabilities of fine imaging (12' FWHM), source
identification and spectral sensitivity to both continuum and broad lines over
a broad (15 keV--10 MeV) energy range. It has a continuum sensitivity of
2~10^{-7} ph cm^{-2} s^{-1} at 1 MeV for a 10^6 seconds observation and a
spectral resolution better than 7 % at 100 keV and of 6 % at 1 MeV. The imaging
capabilities of the IBIS are characterized by the coupling of the above quoted
source discrimination capability with a very wide field of view (FOV), namely 9
x 9 degrees fully coded, 29 x 29 degrees partially coded FOV. We present
simulations of IBIS observations of the Galactic Center based on the results of
the SIGMA Galactic Center survey. They show the capabilities of this instrument
in discriminating between different sources while at the same time monitoring a
huge FOV. It will be possible to simultaneously take spectra of all of these
sources over the FOV even if the sensitivity decreases out of the fully coded
area. It is envisaged that a proper exploitation of both the FOV dimension and
the source localization capability of the IBIS will be a key factor in
maximizing its scientific output.Comment: 5 pages, LaTeX, to be published in the 4th Compton Symposium
Conference Proceedings, uses aipproc.cls, aipproc.sty (included
- …
