30,495 research outputs found

    Relative periodic orbits in point vortex systems

    Full text link
    We give a method to determine relative periodic orbits in point vortex systems: it consists mainly into perform a symplectic reduction on a fixed point submanifold in order to obtain a two-dimensional reduced phase space. The method is applied to point vortices systems on a sphere and on the plane, but works for other surfaces with isotropy (cylinder, ellipsoid, ...). The method permits also to determine some relative equilibria and heteroclinic cycles connecting these relative equilibria.Comment: 27 pages, 17 figure

    Mode Competition in Dual-Mode Quantum Dots Semiconductor Microlaser

    Full text link
    This paper describes the modeling of quantum dots lasers with the aim of assessing the conditions for stable cw dual-mode operation when the mode separation lies in the THz range. Several possible models suited for InAs quantum dots in InP barriers are analytically evaluated, in particular quantum dots electrically coupled through a direct exchange of excitation by the wetting layer or quantum dots optically coupled through the homogeneous broadening of their optical gain. A stable dual-mode regime is shown possible in all cases when quantum dots are used as active layer whereas a gain medium of quantum well or bulk type inevitably leads to bistable behavior. The choice of a quantum dots gain medium perfectly matched the production of dual-mode lasers devoted to THz generation by photomixing.Comment: First draft of a paper submitted to Phys Rev A. This version includes an extended discussion about dual-mode lasers and recall some known results about stability. Extended bibliograph

    Hunting for Runaways from the Orion Nebula Cluster

    Full text link
    We use Gaia DR2 to hunt for runaway stars from the Orion Nebula Cluster (ONC). We search a region extending 45{\deg} around the ONC and out to 1 kpc to find sources that overlapped in angular position with the cluster in the last ~10 Myr. We find ~17,000 runaway/walkaway candidates satisfy this 2D traceback condition. Most of these are expected to be contaminants, e.g., caused by Galactic streaming motions of stars at different distances. We thus examine six further tests to help identify real runaways, namely: (1) possessing young stellar object (YSO) colors and magnitudes based on Gaia optical photometry; (2) having IR excess consistent with YSOs based on 2MASS and WISE photometry; (3) having a high degree of optical variability; (4) having closest approach distances well constrained to within the cluster half-mass radius; (5) having ejection directions that avoid the main Galactic streaming contamination zone; and (6) having a required radial velocity (RV) for 3D overlap of reasonable magnitude (or, for the 7% of candidates with measured RVs, satisfying 3D traceback). Thirteen sources, not previously noted as Orion members, pass all these tests, while another twelve are similarly promising, except they are in the main Galactic streaming contamination zone. Among these 25 ejection candidates, ten with measured RVs pass the most restrictive 3D traceback condition. We present full lists of runaway/walkaway candidates, estimate the high-velocity population ejected from the ONC and discuss its implications for cluster formation theories via comparison with numerical simulations.Comment: 22 pages, 10 figures, and 5 tables. Accepted for publication in Ap

    Plastic deformation of rough rolling contact: An experimental and numerical investigation

    Get PDF
    Quantifying the surface roughness evolution in contacts is a crucial step in the fatigue prediction process. Surfaces are initially conditioned by the running-in process and later altered by surface fatigue. The aim of this study is to understand and predict the evolution of the micro-geometry in the first few over-rolling cycles. Numerical predictions are validated by experiments. A major difficulty in understanding surface degradation is the measurement of the surface roughness evolution at the relevant scales. A twin disc micro-test rig, called μMag, was specially designed for this kind of analysis. The μMag allows the “in situ” observation of changes in the disc surface during interrupted tests, thus avoiding dismounting the specimens, which is a major cause of inaccuracy. The new method also maintains the relative position of the two discs. The precision of the measurements allows one to use the initial surface micro-geometry as input for the numerical contact calculation. Thus, the plastic deformation of the surfaces can be measured during the first cycles and compared to the numerical prediction. Results show a very good agreement between numerical predictions and experimental measurements

    Holomorphic Poisson Manifolds and Holomorphic Lie Algebroids

    Full text link
    We study holomorphic Poisson manifolds and holomorphic Lie algebroids from the viewpoint of real Poisson geometry. We give a characterization of holomorphic Poisson structures in terms of the Poisson Nijenhuis structures of Magri-Morosi and describe a double complex which computes the holomorphic Poisson cohomology. A holomorphic Lie algebroid structure on a vector bundle AXA\to X is shown to be equivalent to a matched pair of complex Lie algebroids (T0,1X,A1,0)(T^{0,1}X,A^{1,0}), in the sense of Lu. The holomorphic Lie algebroid cohomology of AA is isomorphic to the cohomology of the elliptic Lie algebroid T0,1XA1,0T^{0,1}X\bowtie A^{1,0}. In the case when (X,π)(X,\pi) is a holomorphic Poisson manifold and A=(TX)πA=(T^*X)_\pi, such an elliptic Lie algebroid coincides with the Dirac structure corresponding to the associated generalized complex structure of the holomorphic Poisson manifold.Comment: 29 pages, v2: paper split into two, part 1 of 2, v3: two references added, v4: final version to appear in International Mathematics Research Notice

    The IBIS view of the galactic centre: INTEGRAL's imager observations simulations

    Full text link
    The Imager on Board Integral Satellite (IBIS) is the imaging instrument of the INTEGRAL satellite, the hard-X/soft-gamma ray ESA mission to be launched in 2001. It provides diagnostic capabilities of fine imaging (12' FWHM), source identification and spectral sensitivity to both continuum and broad lines over a broad (15 keV--10 MeV) energy range. It has a continuum sensitivity of 2~10^{-7} ph cm^{-2} s^{-1} at 1 MeV for a 10^6 seconds observation and a spectral resolution better than 7 % at 100 keV and of 6 % at 1 MeV. The imaging capabilities of the IBIS are characterized by the coupling of the above quoted source discrimination capability with a very wide field of view (FOV), namely 9 x 9 degrees fully coded, 29 x 29 degrees partially coded FOV. We present simulations of IBIS observations of the Galactic Center based on the results of the SIGMA Galactic Center survey. They show the capabilities of this instrument in discriminating between different sources while at the same time monitoring a huge FOV. It will be possible to simultaneously take spectra of all of these sources over the FOV even if the sensitivity decreases out of the fully coded area. It is envisaged that a proper exploitation of both the FOV dimension and the source localization capability of the IBIS will be a key factor in maximizing its scientific output.Comment: 5 pages, LaTeX, to be published in the 4th Compton Symposium Conference Proceedings, uses aipproc.cls, aipproc.sty (included
    corecore