42 research outputs found

    The Parkinson-associated human P5B-ATPase ATP13A2 protects against the iron-induced cytotoxicity

    Get PDF
    AbstractP-type ion pumps are membrane transporters that have been classified into five subfamilies termed P1–P5. The ion transported by the P5-ATPases is not known. Five genes named ATP13A1–ATP13A5 that belong to the P5-ATPase group are present in humans. Loss-of-function mutations in the ATP13A2 gene (PARK9, OMIM 610513) underlay a form of Parkinson's disease (PD) known as the Kufor–Rakeb syndrome (KRS), which belongs to the group of syndromes of neurodegeneration with brain iron accumulation (NBIA).Here we report that the cytotoxicity induced by iron exposure was two-fold reduced in CHO cells stably expressing the ATP13A2 recombinant protein (ATP13A2). Moreover, the iron content in ATP13A2 cells was lower than control cells stably expressing an inactive mutant of ATP13A2. ATP13A2 expression caused an enlargement of lysosomes and late endosomes. ATP13A2 cells exhibited a reduced iron-induced lysosome membrane permeabilization (LMP). These results suggest that ATP13A2 overexpression improves the lysosome membrane integrity and protects against the iron-induced cell damage

    Drivers of population structure of the bottlenose dolphin (Tursiops truncatus) in the Eastern Mediterranean Sea

    Get PDF
    The drivers of population differentiation in oceanic high dispersal organisms, have been crucial for research in evolutionary biology. Adaptation to different environments is commonly invoked as a driver of differentiation in the oceans, in alternative to geographic isolation. In this study, we investigate the population structure and phylogeography of the bottlenose dolphin (Tursiops truncatus) in the Mediterranean Sea, using microsatellite loci and the entire mtDNA control region. By further comparing the Mediterranean populations with the well described Atlantic populations, we addressed the following hypotheses: (1) bottlenose dolphins show population structure within the environmentally complex Eastern Mediterranean Sea; (2) population structure was gained locally or otherwise results from chance distribution of preexisting genetic structure; (3) strong demographic variations within the Mediterranean basin have affected genetic variation sufficiently to bias detected patterns of population structure. Our results suggest that bottlenose dolphin exhibits population structures that correspond well to the main Mediterranean oceanographic basins. Furthermore, we found evidence for fine scale population division within the Adriatic and the Levantine seas. We further describe for the first time, a distinction between populations inhabiting pelagic and coastal regions within the Mediterranean. Phylogeographic analysis suggests that current genetic structure, results mostly from stochastic distribution of Atlantic genetic variation, during a recent postglacial expansion. Comparison with Atlantic mtDNA haplotypes, further suggest the existence of a metapopulation across North Atlantic/Mediterranean, with pelagic regions acting as source for coastal environments

    Satellite Tagging and Biopsy Sampling of Killer Whales at Subantarctic Marion Island: Effectiveness, Immediate Reactions and Long-Term Responses

    Get PDF
    Remote tissue biopsy sampling and satellite tagging are becoming widely used in large marine vertebrate studies because they allow the collection of a diverse suite of otherwise difficult-to-obtain data which are critical in understanding the ecology of these species and to their conservation and management. Researchers must carefully consider their methods not only from an animal welfare perspective, but also to ensure the scientific rigour and validity of their results. We report methods for shore-based, remote biopsy sampling and satellite tagging of killer whales Orcinus orca at Subantarctic Marion Island. The performance of these methods is critically assessed using 1) the attachment duration of low-impact minimally percutaneous satellite tags; 2) the immediate behavioural reactions of animals to biopsy sampling and satellite tagging; 3) the effect of researcher experience on biopsy sampling and satellite tagging; and 4) the mid- (1 month) and long- (24 month) term behavioural consequences. To study mid- and long-term behavioural changes we used multievent capture-recapture models that accommodate imperfect detection and individual heterogeneity. We made 72 biopsy sampling attempts (resulting in 32 tissue samples) and 37 satellite tagging attempts (deploying 19 tags). Biopsy sampling success rates were low (43%), but tagging rates were high with improved tag designs (86%). The improved tags remained attached for 26±14 days (mean ± SD). Individuals most often showed no reaction when attempts missed (66%) and a slight reaction-defined as a slight flinch, slight shake, short acceleration, or immediate dive-when hit (54%). Severe immediate reactions were never observed. Hit or miss and age-sex class were important predictors of the reaction, but the method (tag or biopsy) was unimportant. Multievent trap-dependence modelling revealed considerable variation in individual sighting patterns; however, there were no significant mid- or long-term changes following biopsy sampling or tagging

    Macrophyte influence on the structure and productivity of photosynthetic picoplankton in wetlands

    Get PDF
    18 pages, 9 figures, 3 tablesWe used multiple approaches to analyze photosynthetic picoplankton (PPP) structure and production in a wetland in the Lower Paraná Basin (Argentina). A seasonal field survey was combined with an experimental study to analyze PPP variability under different light conditions. Flow cytometry analyses showed differences in PPP structure among the aquatic environments. Three main picoplankton populations were distinguished: phycocyanin-rich picocyanobacteria (Pcy), picoeukaryote (Peuk) and anaerobic anoxygenic photosynthetic bacteria (AnAnPB). The experimental study revealed important changes in PPP structure in relation to the light conditions imposed by floating plants: enclosures exposed to light showed a higher proportion of Peuk and Pcy over AnAnPB; in mesocosms covered by plants, just as in the highly vegetated relict lakes (ROLs), AnAnPB were dominant. Total picophytoplankton abundances varied from 1.7 x 104 to 4.6 x 105 cells mL–1 in the shallow lakes, and were lower (0.69 x 104 to 2.5 x 105 cells mL–1) in the ROLs. Annual variations in temperature and hydrological conditions influenced the PPP abundances, observing maximum values during the warm dry phase. The photosynthetic rates per unit area of PPP (PAPPP) and algae >3 µm (PA>3 µm) were measured in the aquatic environments in winter and summer: PA PPP (1.5 to 100 mg C m–2h–1) was lower than PA >3 µm and was directly affected by light, which was limiting under the dense floating plant coverThis research was supported by grants of University of Buenos Aires (UBACyT X195 and X815) and ANPCyT, Argentina (PICT 12332, PICT 536)Peer reviewe

    Reduction of the P5A-ATPase Spf1p phosphoenzyme by a Ca<sup>2+</sup>-dependent phosphatase

    Get PDF
    P5 ATPases are eukaryotic pumps important for cellular metal ion, lipid and protein homeostasis; however, their transported substrate, if any, remains to be identified. Ca2+ was proposed to act as a ligand of P5 ATPases because it decreases the level of phosphoenzyme of the Spf1p P5A ATPase from Saccharomyces cerevisiae. Repeating previous purification protocols, we obtained a purified preparation of Spf1p that was close to homogeneity and exhibited ATP hydrolytic activity that was stimulated by the addition of CaCl2. Strikingly, a preparation of a catalytically dead mutant Spf1p (D487N) also exhibited Ca2+-dependent ATP hydrolytic activity. These results indicated that the Spf1p preparation contained a co-purifying protein capable of hydrolyzing ATP at a high rate. The activity was likely due to a phosphatase, since the protein i) was highly active when pNPP was used as substrate, ii) required Ca2+ or Zn2+ for activity, and iii) was strongly inhibited by molybdate, beryllium and other phosphatase substrates. Mass spectrometry identified the phosphatase Pho8p as a contaminant of the Spf1p preparation. Modification of the purification procedure led to a contaminant-free Spf1p preparation that was neither stimulated by Ca2+ nor inhibited by EGTA or molybdate. The phosphoenzyme levels of a contaminant-free Spf1p preparation were not affected by Ca2+. These results indicate that the reported effects of Ca2+ on Spf1p do not reflect the intrinsic properties of Spf1p but are mediated by the activity of the accompanying phosphatase
    corecore