25,589 research outputs found

    A precessing jet model for the PN K 3-35: simulated radio-continuum emission

    Full text link
    The bipolar morphology of the planetary nebula (PN) K 3-35 observed in radio-continuum images was modelled with 3D hydrodynamic simulations with the adaptive grid code yguazu-a. We find that the observed morphology of this PN can be reproduced considering a precessing jet evolving in a dense AGB circumstellar medium, given by a mass loss rate \dot{M}_{csm}=5x10^{-5}M_{\odot}/yr and a terminal velocity v_{w}=10 km/s. Synthetic thermal radio-continuum maps were generated from numerical results for several frequencies. Comparing the maps and the total fluxes obtained from the simulations with the observational results, we find that a model of precessing dense jets, where each jet injects material into the surrounding CSM at a rate \dot{M}_j=2.8x10^{-4} {M_{\odot}/yr (equivalent to a density of 8x10^{4} {cm}^{-3}, a velocity of 1500 km/s, a precession period of 100 yr, and a semi-aperture precession angle of 20 degrees agrees well with the observations.Comment: 6 pages, 4 figures, accepted to MNRA

    3D MHD Modeling of the Gaseous Structure of the Galaxy: Synthetic Observations

    Full text link
    We generated synthetic observations from the four-arm model presented in Gomez & Cox (2004) for the Galactic ISM in the presence of a spiral gravitational perturbation. We found that velocity crowding and diffusion have a strong effect in the l-v diagram. The v-b diagram presents structures at the expected spiral arm velocities, that can be explained by the off-the-plane structure of the arms presented in previous papers of this series. Such structures are observed in the Leiden/Dwingeloo HI survey. The rotation curve, as measured from the inside of the modeled galaxy, shows similarities with the observed one for the Milky Way Galaxy, although it has large deviations from the smooth circular rotation corresponding to the background potential. The magnetic field inferred from a synthetic synchrotron map shows a largely circular structure, but with interesting deviations in the midplane due to distortion of the field from circularity in the interarm regions.Comment: Accepted for publication in ApJ. Better quality figures in http://www.astro.umd.edu/~gomez/publica/3d_galaxy-3.pd

    Path integral approach to no-Coriolis approximation in heavy-ion collisions

    Get PDF
    We use the two time influence functional method of the path integral approach in order to reduce the dimension of the coupled-channels equations for heavy-ion reactions based on the no-Coriolis approximation. Our method is superior to other methods in that it easily enables us to study the cases where the initial spin of the colliding particle is not zero. It can also be easily applied to the cases where the internal degrees of freedom are not necessarily collective coordinates. We also clarify the underlying assumptions in our approach.Comment: 11 pages, Latex, Phys. Rev. C in pres

    An Early Universe Model with Stiff Matter and a Cosmological Constant

    Full text link
    In the present work, we study the quantum cosmology description of a Friedmann-Robertson-Walker model in the presence of a stiff matter perfect fluid and a negative cosmological constant. We work in the Schutz's variational formalism and the spatial sections have constant negative curvature. We quantize the model and obtain the appropriate Wheeler-DeWitt equation. In this model the states are bounded therefore we compute the discrete energy spectrum and the corresponding eigenfunctions. In the present work, we consider only the negative eigenvalues and their corresponding eigenfunctions. This choice implies that the energy density of the perfect fluid is negative. A stiff matter perfect fluid with this property produces a model with a bouncing solution, at the classical level, free from an initial singularity. After that, we use the eigenfunctions in order to construct wave packets and evaluate the time-dependent expectation value of the scale factor. We find that it oscillates between maximum and minimum values. Since the expectation value of the scale factor never vanishes, we confirm that this model is free from an initial singularity, also, at the quantum level.Comment: 12 Pages, 4 Figures. Final version. Accepted for publication in the Proceedings of the 8th Friedmann Seminar, Rio de Janeiro, 2011. We restricted our attention to treat the case where the stiff matter has negative energy eigenvalues, following the referee's suggestio

    From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab

    Get PDF
    We investigate a periodic array of aluminum nanoantennas embedded in a light-emitting slab waveguide. By varying the waveguide thickness we demonstrate the transition from weak to strong coupling between localized surface plasmons in the nanoantennas and refractive index guided modes in the waveguide. We experimentally observe a non-trivial relationship between extinction and emission dispersion diagrams across the weak to strong coupling transition. These results have implications for a broad class of photonic structures where sources are embedded within coupled resonators. For nanoantenna arrays, strong vs. weak coupling leads to drastic modifications of radiation patterns without modifying the nanoantennas themselves, thereby representing an unprecedented design strategy for nanoscale light sources

    Resolving parameter degeneracies in long-baseline experiments by atmospheric neutrino data

    Full text link
    In this work we show that the physics reach of a long-baseline (LBL) neutrino oscillation experiment based on a superbeam and a megaton water Cherenkov detector can be significantly increased if the LBL data are combined with data from atmospheric neutrinos (ATM) provided by the same detector. ATM data are sensitive to the octant of Ξ23\theta_{23} and to the type of the neutrino mass hierarchy, mainly through three-flavor effects in e-like events. This allows to resolve the so-called Ξ23\theta_{23}- and sign(Δm312\Delta m^2_{31})-parameter degeneracies in LBL data. As a consequence it becomes possible to distinguish the normal from the inverted neutrino mass ordering at 2σ2\sigma CL from a combined LBL+ATM analysis if sin⁥22Ξ13≳0.02\sin^2 2\theta_{13} \gtrsim 0.02. The potential to identify the true values of sin⁥22Ξ13\sin^2 2\theta_{13} and the CP-phase ÎŽcp\delta_{cp} is significantly increased through the lifting of the degeneracies. These claims are supported by a detailed simulation of the T2K (phase II) LBL experiment combined with a full three-flavor analysis of ATM data in the HyperKamiokande detector.Comment: 25 pages, 10 figure

    A survey for water maser emission towards planetary nebulae. New detection in IRAS 17347-3139

    Full text link
    We report on a water maser survey towards a sample of 27 planetary nebulae (PNe) using the Robledo de Chavela and Medicina single-dish antennas, as well as the Very Large Array (VLA). Two detections have been obtained: the already known water maser emission in K 3-35, and a new cluster of masers in IRAS 17347-3139. This low rate of detections is compatible with the short life-time of water molecules in PNe (~100 yr). The water maser cluster at IRAS 17347-3139 are distributed on a ellipse of size ~ 0.2" x 0.1", spatially associated with compact 1.3 cm continuum emission (simultaneously observed with the VLA). From archive VLA continuum data at 4.9, 8.4, and 14.9 GHz, a spectral index alpha = 0.76 +- 0.03 is derived for this radio source, which is consistent with either a partially optically thick ionized region or with an ionized wind. However, the latter scenario can be ruled out on mass-loss considerations, thus indicating that this source is probably a young PN. The spatial distribution and the radial velocities of the water masers are suggestive of a rotating and expanding maser ring, tracing the innermost regions of a torus formed at the end of the AGB phase. Given that the 1.3 cm continuum emission peak is located near one of the tips of the major axis of the ellipse of masers, we speculate on a possible binary nature of IRAS 17347-3139, where the radio continuum emission could belong to one of the components and the water masers would be associated with a companion.Comment: Accepted by The Astrophysical Journal. 25 pages, 6 figure

    H2O Maser Observations of Candidate Post-AGB Stars and Discovery of Three High-velocity Water Sources

    Full text link
    We present the results of 22 GHz H_2O maser observations of a sample of 85 post-Asymptotic Giant Branch (post-AGB) candidate stars, selected on the basis of their OH 1612 MHz maser and far-infrared properties. All sources were observed with the Tidbinbilla 70-m radio telescope and 21 detections were made. 86 GHz SiO Mopra observations of a subset of the sample are also presented. Of the 21 H_2O detections, 15 are from sources that are likely to be massive AGB stars and most of these show typical, regular H_2O maser profiles. In contrast, nearly all the detections of more evolved stars exhibited high-velocity H_2O maser emission. Of the five sources seen, v223 (W43A, IRAS 18450-0148) is a well known `water-fountain' source which belongs to a small group of post-AGB stars with highly collimated, high-velocity H_2O maser emission. A second source in our sample, v270 (IRAS 18596+0315), is also known to have high-velocity emission. We report the discovery of similar emission from a further three sources, d46 (IRAS 15445-5449), d62 (IRAS 15544-5332) and b292 (IRAS 18043-2116). The source d46 is an evolved post-AGB star with highly unusual maser properties. The H_2O maser emission from d62 is probably associated with a massive star. The source b292 is a young post-AGB star that is highly likely to be a water-fountain source, with masers detected over a velocity range of 210 km s^{-1}.Comment: 47 pages, 9 figures, 4 tables, accepted by Ap

    OH 12.8-0.9: A New Water-Fountain Source

    Full text link
    We present observational evidence that the OH/IR star OH 12.8-0.9 is the fourth in a class of objects previously dubbed "water-fountain" sources. Using the Very Long Baseline Array, we produced the first images of the water maser emission associated with OH 12.8-0.9. We find that the masers are located in two compact regions with an angular separation of ~109 mas on the sky. The axis of separation between the two maser regions is at a position angle of 1.5 deg. East of North with the blue-shifted (-80.5 to -85.5 km/s) masers located to the North and the red-shifted (-32.0 to -35.5 km/s) masers to the South. In addition, we find that the blue- and red-shifted masers are distributed along arc-like structures ~10-12 mas across oriented roughly perpendicular to the separation axis. The morphology exhibited by the water masers is suggestive of an axisymmetric wind with the masers tracing bow shocks formed as the wind impacts the ambient medium. This bipolar jet-like structure is typical of the three other confirmed water-fountain sources. When combined with the previously observed spectral characteristics of OH 12.8-0.9, the observed spatio-kinematic structure of the water masers provides strong evidence that OH 12.8-0.9 is indeed a member of the water-fountain class.Comment: 12 pages, 2 figures (1 color), accepted for publication in the Ap J Letter
    • 

    corecore