1,331 research outputs found

    Variational Dropout and the Local Reparameterization Trick

    Get PDF
    We investigate a local reparameterizaton technique for greatly reducing the variance of stochastic gradients for variational Bayesian inference (SGVB) of a posterior over model parameters, while retaining parallelizability. This local reparameterization translates uncertainty about global parameters into local noise that is independent across datapoints in the minibatch. Such parameterizations can be trivially parallelized and have variance that is inversely proportional to the minibatch size, generally leading to much faster convergence. Additionally, we explore a connection with dropout: Gaussian dropout objectives correspond to SGVB with local reparameterization, a scale-invariant prior and proportionally fixed posterior variance. Our method allows inference of more flexibly parameterized posteriors; specifically, we propose variational dropout, a generalization of Gaussian dropout where the dropout rates are learned, often leading to better models. The method is demonstrated through several experiments

    Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets

    Full text link
    Hierarchical Bayesian networks and neural networks with stochastic hidden units are commonly perceived as two separate types of models. We show that either of these types of models can often be transformed into an instance of the other, by switching between centered and differentiable non-centered parameterizations of the latent variables. The choice of parameterization greatly influences the efficiency of gradient-based posterior inference; we show that they are often complementary to eachother, we clarify when each parameterization is preferred and show how inference can be made robust. In the non-centered form, a simple Monte Carlo estimator of the marginal likelihood can be used for learning the parameters. Theoretical results are supported by experiments

    Auto-Encoding Variational Bayes

    Get PDF
    How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions is two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results

    An Introduction to Variational Autoencoders

    Full text link
    Variational autoencoders provide a principled framework for learning deep latent-variable models and corresponding inference models. In this work, we provide an introduction to variational autoencoders and some important extensions

    Training a Spiking Neural Network with Equilibrium Propagation

    Get PDF
    Backpropagation is almost universally used to train artificial neural networks. However, there are several reasons that backpropagation could not be plausibly implemented by biological neurons. Among these are the facts that (1) biological neurons appear to lack any mechanism for sending gradients backwards across synapses, and (2) biological “spiking” neurons emit binary signals, whereas back-propagation requires that neurons communicate continuous values between one another. Recently, Scellier and Bengio [2017], demonstrated an alternative to backpropagation, called Equilibrium Propagation, wherein gradients are implicitly computed by the dynamics of the neural network, so that neurons do not need an internal mechanism for backpropagation of gradients. This provides an interesting solution to problem (1). In this paper, we address problem (2) by proposing a way in which Equilibrium Propagation can be implemented with neurons which are constrained to just communicate binary values at each time step. We show that with appropriate step-size annealing, we can converge to the same fixed-point as a real-valued neural network, and that with predictive coding, we can make this convergence much faster. We demonstrate that the resulting model can be used to train a spiking neural network using the update scheme from Equilibrium propagation

    The 2+1 Kepler Problem and Its Quantization

    Get PDF
    We study a system of two pointlike particles coupled to three dimensional Einstein gravity. The reduced phase space can be considered as a deformed version of the phase space of two special-relativistic point particles in the centre of mass frame. When the system is quantized, we find some possibly general effects of quantum gravity, such as a minimal distances and a foaminess of the spacetime at the order of the Planck length. We also obtain a quantization of geometry, which restricts the possible asymptotic geometries of the universe.Comment: 59 pages, LaTeX2e, 9 eps figure
    corecore