1,231 research outputs found
Resolving the molecular gas around the lensed quasar RXJ0911.4+0551
We report on high angular resolution observations of the CO(7-6) line and
millimeter continuum in the host galaxy of the gravitationally lensed (z~2.8)
quasar RXJ0911.4+0551 using the Plateau de Bure Interferometer. Our CO
observations resolve the molecular disk of the source. Using a lens model based
on HST observations we fit source models to the observed visibilities. We
estimate a molecular disk radius of 10.2 kpc and an inclination of
696\deg, the continuum is more compact and is only marginally resolved by
our observations. The relatively low molecular gas mass, Msolar, and far infrared luminosity, Lsolar, of this quasar could be explained by its relatively low
dynamical mass, Msolar. It would be a
scaled-down version the QSOs usually found at high-z. The FIR and CO
luminosities lie on the correlation found for QSOs from low to high redshifts
and the gas-to-dust ratio () is similar to the one measured in the
z=6.4 QSO, SDSS J1148+5251. Differential magnification affects the
continuum-to-line luminosity ratio, the line profile and possibly the spectral
energy distribution.Comment: Accepted for publication in A&A, revised after language editin
Molecular gas heating in Arp 299
Understanding the heating and cooling mechanisms in nearby (Ultra) luminous
infrared galaxies can give us insight into the driving mechanisms in their more
distant counterparts. Molecular emission lines play a crucial role in cooling
excited gas, and recently, with Herschel Space Observatory we have been able to
observe the rich molecular spectrum. CO is the most abundant and one of the
brightest molecules in the Herschel wavelength range. CO transitions are
observed with Herschel, and together, these lines trace the excitation of CO.
We study Arp 299, a colliding galaxy group, with one component harboring an AGN
and two more undergoing intense star formation. For Arp 299 A, we present PACS
spectrometer observations of high-J CO lines up to J=20-19 and JCMT
observations of CO and HCN to discern between UV heating and alternative
heating mechanisms. There is an immediately noticeable difference in the
spectra of Arp 299 A and Arp 299 B+C, with source A having brighter high-J CO
transitions. This is reflected in their respective spectral energy line
distributions. We find that photon-dominated regions (PDRs) are unlikely to
heat all the gas since a very extreme PDR is necessary to fit the high-J CO
lines. In addition, this extreme PDR does not fit the HCN observations, and the
dust spectral energy distribution shows that there is not enough hot dust to
match the amount expected from such an extreme PDR. Therefore, we determine
that the high-J CO and HCN transitions are heated by an additional mechanism,
namely cosmic ray heating, mechanical heating, or X-ray heating. We find that
mechanical heating, in combination with UV heating, is the only mechanism that
fits all molecular transitions. We also constrain the molecular gas mass of Arp
299 A to 3e9 Msun and find that we need 4% of the total heating to be
mechanical heating, with the rest UV heating
Radiative and mechanical feedback into the molecular gas of NGC 253
Starburst galaxies are undergoing intense periods of star formation.
Understanding the heating and cooling mechanisms in these galaxies can give us
insight to the driving mechanisms that fuel the starburst. Molecular emission
lines play a crucial role in the cooling of the excited gas. With SPIRE on the
Herschel Space Observatory we have observed the rich molecular spectrum towards
the central region of NGC 253. CO transitions from J=4-3 to 13-12 are observed
and together with low-J line fluxes from ground based observations, these lines
trace the excitation of CO. By studying the CO excitation ladder and comparing
the intensities to models, we investigate whether the gas is excited by UV
radiation, X-rays, cosmic rays, or turbulent heating. Comparing the CO
and CO observations to large velocity gradient models and PDR models we
find three main ISM phases. We estimate the density, temperature,and masses of
these ISM phases. By adding CO, HCN, and HNC line intensities, we are
able to constrain these degeneracies and determine the heating sources. The
first ISM phase responsible for the low-J CO lines is excited by PDRs, but the
second and third phases, responsible for the mid to high-J CO transitions,
require an additional heating source. We find three possible combinations of
models that can reproduce our observed molecular emission. Although we cannot
determine which of these are preferable, we can conclude that mechanical
heating is necessary to reproduce the observed molecular emission and cosmic
ray heating is a negligible heating source. We then estimate the mass of each
ISM phase; M for phase 1 (low-J CO lines), M for phase 2 (mid-J CO lines), and M for
phase 3 (high-J CO lines) for a total system mass of M
Excitation of the molecular gas in the nuclear region of M82
We present high resolution HIFI spectroscopy of the nucleus of the
archetypical starburst galaxy M82. Six 12CO lines, 2 13CO lines and 4
fine-structure lines are detected. Besides showing the effects of the overall
velocity structure of the nuclear region, the line profiles also indicate the
presence of multiple components with different optical depths, temperatures and
densities in the observing beam. The data have been interpreted using a grid of
PDR models. It is found that the majority of the molecular gas is in low
density (n=10^3.5 cm^-3) clouds, with column densities of N_H=10^21.5 cm^-2 and
a relatively low UV radiation field (GO = 10^2). The remaining gas is
predominantly found in clouds with higher densities (n=10^5 cm^-3) and
radiation fields (GO = 10^2.75), but somewhat lower column densities
(N_H=10^21.2 cm^-2). The highest J CO lines are dominated by a small (1%
relative surface filling) component, with an even higher density (n=10^6 cm^-3)
and UV field (GO = 10^3.25). These results show the strength of multi-component
modeling for the interpretation of the integrated properties of galaxies.Comment: Accepted for publication in A&A Letter
The ARGUS Vertex Trigger
A fast second level trigger has been developed for the ARGUS experiment which
recognizes tracks originating from the interaction region. The processor
compares the hits in the ARGUS Micro Vertex Drift Chamber to 245760 masks
stored in random access memories. The masks which are fully defined in three
dimensions are able to reject tracks originating in the wall of the narrow
beampipe of 10.5\,mm radius.Comment: gzipped Postscript, 27 page
Annual Report 2009 - Institute of Safety Research
The Institute of Safety Research (ISR) is one of the six Research Institutes of Forschungszentrum Dresden-Rossendorf e.V. (FZD), which is a member institution of the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (Leibnizgemeinschaft). Together with the Institutes of Radiochemistry and Radiation Physics, ISR implements the research programme „Nuclear Safety Research“, which is one of the three scientific programmes of FZD. The programme includes two main topics, i. e. “Safety Research for Radioactive Waste Disposal” and “Safety Research for Nuclear Reactors”
Effects of Diversity on Multi-agent Systems: Minority Games
We consider a version of large population games whose agents compete for
resources using strategies with adaptable preferences. The games can be used to
model economic markets, ecosystems or distributed control. Diversity of initial
preferences of strategies is introduced by randomly assigning biases to the
strategies of different agents. We find that diversity among the agents reduces
their maladaptive behavior. We find interesting scaling relations with
diversity for the variance and other parameters such as the convergence time,
the fraction of fickle agents, and the variance of wealth, illustrating their
dynamical origin. When diversity increases, the scaling dynamics is modified by
kinetic sampling and waiting effects. Analyses yield excellent agreement with
simulations.Comment: 41 pages, 16 figures; minor improvements in content, added
references; to be published in Physical Review
On the Field-Induced Transport of Magnetic Nanoparticles in Incompressible Flow: Existence of Global Solutions
We prove global-in-time existence of weak solutions to a pde-model for the motion of dilute superparamagnetic nanoparticles in fluids influenced by quasi-stationary magnetic fields. This model has recently been derived in Grün and Weiß(On the field-induced transport of magnetic nanoparticles in incompressible flow: modeling and numerics, Mathematical Models and Methods in the Applied Sciences, in press). It couples evolution equations for particle density and magnetization to the hydrodynamic and magnetostatic equations. Suggested by physical arguments, we consider no-flux-type boundary conditions for the magnetization equation which entails H(div,curl)-regularity for magnetization and magnetic field. By a subtle approximation procedure, we nevertheless succeed to give a meaning to the Kelvin force (m⋅∇)h and to establish existence of solutions in the sense of distributions in two space dimensions. For the three-dimensional case, we suggest two regularizations of the system which each guarantee existence of solutions, too
- …