2,541 research outputs found

    Vacuum interpolation in supergravity via super p-branes

    Full text link
    We show that many of the recently proposed supersymmetric p-brane solutions of d=10 and d=11 supergravity have the property that they interpolate between Minkowski spacetime and a compactified spacetime, both being supersymmetric supergravity vacua. Our results imply that the effective worldvolume action for small fluctuations of the super p-brane is a supersingleton field theory for (adS)p+2(adS)_{p+2}, as has been often conjectured in the past.Comment: 8p

    Zero Modes for the D=11 Membrane and Five-Brane

    Get PDF
    There exist extremal p-brane solutions of D ⁣= ⁣11D\!=\!11 supergravity for p=2~and~5. In this paper we investigate the zero modes of the membrane and the five-brane solutions as a first step toward understanding the full quantum theory of these objects. It is found that both solutions possess the correct number of normalizable zero modes dictated by supersymmetry.Comment: Minor typos corrected, one reference added, agrees with published version. 9 RevTeX pages, 1 figure include

    Scattering of Fermions off Dilaton Black Holes

    Full text link
    We discuss how various properties of dilaton black holes depend on the dilaton coupling constant aa. In particular we investigate the aa-dependence of certain mass parameters both outside and in the extremal limit and discuss their relation to thermodynamical quantities. To further illuminate the role of the coupling constant aa we look at a massless point particle in a dilaton black hole geometry as well as the scattering of (neutral) fermions. In this latter case we find that the scattering potential vanishes for the zero angular momentum mode which seems to indicate a catastrophic deradiation when a>1a>1.Comment: 12, Oslo-TP-4-94, USITP-94-

    Small Orbits

    Full text link
    We study both the "large" and "small" U-duality charge orbits of extremal black holes appearing in D = 5 and D = 4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to derive the minimal charge representatives, their stabilizers and the associated "moduli spaces". After recalling N = 8 maximal supergravity, we consider N = 2 and N = 4 theories coupled to an arbitrary number of vector multiplets, as well as N = 2 magic, STU, ST^2 and T^3 models. While the STU model may be considered as part of the general N = 2 sequence, albeit with an additional triality symmetry, the ST^2 and T^3 models demand a separate treatment, since their representative Jordan algebras are Euclidean or only admit non-zero elements of rank 3, respectively. Finally, we also consider minimally coupled N = 2, matter coupled N = 3, and "pure" N = 5 theories.Comment: 40 pages, 9 tables. References added. Expanded comments added to sections III. C. 1. and III. F.

    Supersymmetry Enhancement of D-p-branes and M-branes

    Get PDF
    We examine the supersymmetry of classical D-brane and M-brane configurations and explain the dependence of Killing spinors on coordinates. We find that one half supersymmetry is broken in the bulk and that supersymmetry near the D-brane horizon is restored for p3p\leq 3, for solutions in the stringy frame, but only for p=3p=3 in the10d canonical frame. We study the enhancement for the case of four intersecting D-3-branes in 10 dimensions and the implication of this for the size of the infinite throat of the near horizon geometry in non-compactified theory. We found some indications of universality of near horizon geometries of various intersecting brane configurations.Comment: 18 pages, late

    Twenty Years of the Weyl Anomaly

    Full text link
    In 1973 two Salam prot\'{e}g\'{e}s (Derek Capper and the author) discovered that the conformal invariance under Weyl rescalings of the metric tensor gμν(x)Ω2(x)gμν(x)g_{\mu\nu}(x)\rightarrow\Omega^2(x)g_{\mu\nu}(x) displayed by classical massless field systems in interaction with gravity no longer survives in the quantum theory. Since then these Weyl anomalies have found a variety of applications in black hole physics, cosmology, string theory and statistical mechanics. We give a nostalgic review. (Talk given at the {\it Salamfest}, ICTP, Trieste, March 1993.)Comment: 43 page

    Let's talk about varying G

    Full text link
    It is possible that fundamental constants may not be constant at all. There is a generally accepted view that one can only talk about variations of dimensionless quantities, such as the fine structure constant αee2/4πϵ0c\alpha_{\rm e}\equiv e^2/4\pi\epsilon_0\hbar c. However, constraints on the strength of gravity tend to focus on G itself, which is problematic. We stress that G needs to be multiplied by the square of a mass, and hence, for example, one should be constraining αgGmp2/c\alpha_{\rm g}\equiv G m_{\rm p}^2/\hbar c, where mpm_{\rm p} is the proton mass. Failure to focus on such dimensionless quantities makes it difficult to interpret the physical dependence of constraints on the variation of G in many published studies. A thought experiment involving talking to observers in another universe about the values of physical constants may be useful for distinguishing what is genuinely measurable from what is merely part of our particular system of units.Comment: 6 pages, Gravity Research Foundation essa

    The Finiteness Requirement for Six-Dimensional Euclidean Einstein Gravity

    Get PDF
    The finiteness requirement for Euclidean Einstein gravity is shown to be so stringent that only the flat metric is allowed. We examine counterterms in 4D and 6D Ricci-flat manifolds from general invariance arguments.Comment: 15 pages, Introduction is improved, many figures(eps

    Thermal divergences on the event horizons of two-dimensional black holes

    Full text link
    The expectation value of the stress-energy tensor \langleT_{\mu\nu}\rangle of a free conformally invariant scalar field is computed in a general static two-dimensional black hole spacetime when the field is in either a zero temperature vacuum state or a thermal state at a nonzero temperature. It is found that for every static two-dimensional black hole the stress-energy diverges strongly on the event horizon unless the field is in a state at the natural black hole temperature which is defined by the surface gravity of the event horizon. This implies that both extreme and nonextreme two-dimensional black holes can only be in equilibrium with radiation at the natural black hole temperature.Comment: 13 pages, REVTe

    Higher Structures in M-Theory

    Get PDF
    The key open problem of string theory remains its non-perturbative completion to M-theory. A decisive hint to its inner workings comes from numerous appearances of higher structures in the limits of M-theory that are already understood, such as higher degree flux fields and their dualities, or the higher algebraic structures governing closed string field theory. These are all controlled by the higher homotopy theory of derived categories, generalised cohomology theories, and LL_\infty-algebras. This is the introductory chapter to the proceedings of the LMS/EPSRC Durham Symposium on Higher Structures in M-Theory. We first review higher structures as well as their motivation in string theory and beyond. Then we list the contributions in this volume, putting them into context.Comment: 22 pages, Introductory Article to Proceedings of LMS/EPSRC Durham Symposium Higher Structures in M-Theory, August 2018, references update
    corecore