835 research outputs found

    Quasi-stationary distributions for the Domany-Kinzel stochastic cellular automaton

    Full text link
    We construct the {\it quasi-stationary} (QS) probability distribution for the Domany-Kinzel stochastic cellular automaton (DKCA), a discrete-time Markov process with an absorbing state. QS distributions are derived at both the one- and two-site levels. We characterize the distribuitions by their mean, and various moment ratios, and analyze the lifetime of the QS state, and the relaxation time to attain this state. Of particular interest are the scaling properties of the QS state along the critical line separating the active and absorbing phases. These exhibit a high degree of similarity to the contact process and the Malthus-Verhulst process (the closest continuous-time analogs of the DKCA), which extends to the scaling form of the QS distribution.Comment: 15 pages, 9 figures, submited to PR

    Theory of the NO+CO surface reaction model

    Full text link
    We derive a pair approximation (PA) for the NO+CO model with instantaneous reactions. For both the triangular and square lattices, the PA, derived here using a simpler approach, yields a phase diagram with an active state for CO-fractions y in the interval y_1 < y < y_2, with a continuous (discontinuous) phase transition to a poisoned state at y_1 (y_2). This is in qualitative agreement with simulation for the triangular lattice, where our theory gives a rather accurate prediction for y_2. To obtain the correct phase diagram for the square lattice, i.e., no active state, we reformulate the PA using sublattices. The (formerly) active regime is then replaced by a poisoned state with broken symmetry (unequal sub- lattice coverages), as observed recently by Kortluke et al. [Chem. Phys. Lett. 275, 85 (1997)]. In contrast with their approach, in which the active state persists, although reduced in extent, we report here the first qualitatively correct theory of the NO+CO model on the square lattice. Surface diffusion of nitrogen can lead to an active state in this case. In one dimension, the PA predicts that diffusion is required for the existence of an active state.Comment: 15 pages, 9 figure

    Critical Dynamics of the Contact Process with Quenched Disorder

    Full text link
    We study critical spreading dynamics in the two-dimensional contact process (CP) with quenched disorder in the form of random dilution. In the pure model, spreading from a single particle at the critical point λc\lambda_c is characterized by the critical exponents of directed percolation: in 2+12+1 dimensions, δ=0.46\delta = 0.46, η=0.214\eta = 0.214, and z=1.13z = 1.13. Disorder causes a dramatic change in the critical exponents, to δ0.60\delta \simeq 0.60, η0.42\eta \simeq -0.42, and z0.24z \simeq 0.24. These exponents govern spreading following a long crossover period. The usual hyperscaling relation, 4δ+2η=dz4 \delta + 2 \eta = d z, is violated. Our results support the conjecture by Bramson, Durrett, and Schonmann [Ann. Prob. {\bf 19}, 960 (1991)], that in two or more dimensions the disordered CP has only a single phase transition.Comment: 11 pages, REVTeX, four figures available on reques

    Nature of phase transitions in a probabilistic cellular automaton with two absorbing states

    Get PDF
    We present a probabilistic cellular automaton with two absorbing states, which can be considered a natural extension of the Domany-Kinzel model. Despite its simplicity, it shows a very rich phase diagram, with two second-order and one first-order transition lines that meet at a tricritical point. We study the phase transitions and the critical behavior of the model using mean field approximations, direct numerical simulations and field theory. A closed form for the dynamics of the kinks between the two absorbing phases near the tricritical point is obtained, providing an exact correspondence between the presence of conserved quantities and the symmetry of absorbing states. The second-order critical curves and the kink critical dynamics are found to be in the directed percolation and parity conservation universality classes, respectively. The first order phase transition is put in evidence by examining the hysteresis cycle. We also study the "chaotic" phase, in which two replicas evolving with the same noise diverge, using mean field and numerical techniques. Finally, we show how the shape of the potential of the field-theoretic formulation of the problem can be obtained by direct numerical simulations.Comment: 19 pages with 7 figure

    Interface Scaling in the Contact Process

    Full text link
    Scaling properties of an interface representation of the critical contact process are studied in dimensions 1 - 3. Simulations confirm the scaling relation beta_W = 1 - theta between the interface-width growth exponent beta_W and the exponent theta governing the decay of the order parameter. A scaling property of the height distribution, which serves as the basis for this relation, is also verified. The height-height correlation function shows clear signs of anomalous scaling, in accord with Lopez' analysis [Phys. Rev. Lett. 83, 4594 (1999)], but no evidence of multiscaling.Comment: 10 pages, 9 figure

    Critical behavior for mixed site-bond directed percolation

    Full text link
    We study mixed site-bond directed percolation on 2D and 3D lattices by using time-dependent simulations. Our results are compared with rigorous bounds recently obtained by Liggett and by Katori and Tsukahara. The critical fractions psitecp_{site}^c and pbondcp_{bond}^c of sites and bonds are extremely well approximated by a relationship reported earlier for isotropic percolation, (logpsitec/logpsitec+logpbondc/logpbondc=1)(\log p_{site}^c/\log p_{site}^{c^*}+\log p_{bond}^c/\log p_{bond}^{c^*} = 1) , where psitecp_{site}^{c^*} and pbondcp_{bond}^{c^*} are the critical fractions in pure site and bond directed percolation.Comment: 10 pages, figures available on request from [email protected]

    Integration of Langevin Equations with Multiplicative Noise and Viability of Field Theories for Absorbing Phase Transitions

    Full text link
    Efficient and accurate integration of stochastic (partial) differential equations with multiplicative noise can be obtained through a split-step scheme, which separates the integration of the deterministic part from that of the stochastic part, the latter being performed by sampling exactly the solution of the associated Fokker-Planck equation. We demonstrate the computational power of this method by applying it to most absorbing phase transitions for which Langevin equations have been proposed. This provides precise estimates of the associated scaling exponents, clarifying the classification of these nonequilibrium problems, and confirms or refutes some existing theories.Comment: 4 pages. 4 figures. RevTex. Slightly changed versio

    First- and second-order phase transitions in a driven lattice gas with nearest-neighbor exclusion

    Full text link
    A lattice gas with infinite repulsion between particles separated by 1\leq 1 lattice spacing, and nearest-neighbor hopping dynamics, is subject to a drive favoring movement along one axis of the square lattice. The equilibrium (zero drive) transition to a phase with sublattice ordering, known to be continuous, shifts to lower density, and becomes discontinuous for large bias. In the ordered nonequilibrium steady state, both the particle and order-parameter densities are nonuniform, with a large fraction of the particles occupying a jammed strip oriented along the drive. The relaxation exhibits features reminiscent of models of granular and glassy materials.Comment: 8 pages, 5 figures; results due to bad random number generator corrected; significantly revised conclusion

    Directed Percolation and Generalized Friendly Walkers

    Full text link
    We show that the problem of directed percolation on an arbitrary lattice is equivalent to the problem of m directed random walkers with rather general attractive interactions, when suitably continued to m=0. In 1+1 dimensions, this is dual to a model of interacting steps on a vicinal surface. A similar correspondence with interacting self-avoiding walks is constructed for isotropic percolation.Comment: 4 pages, 3 figures, to be published in Phys. Rev. Let

    Pair contact process with a particle source

    Full text link
    We study the phase diagram and critical behavior of the one-dimensional pair contact process (PCP) with a particle source using cluster approximations and extensive simulations. The source creates isolated particles only, not pairs, and so couples not to the order parameter (the pair density) but to a non-ordering field, whose state influences the evolution of the order parameter. While the critical point p_c shows a singular dependence on the source intensity, the critical exponents appear to be unaffected by the presence of the source, except possibly for a small change in beta. In the course of our study we obtain high-precision values for the critical exponents of the standard PCP, confirming directed-percolation-like scaling.Comment: 15 pages, 9 figure
    corecore