4,916 research outputs found
Periodic variations in the colours of the classical T Tauri star RW Aur A
The classical T Tauri star RW Aur A is an irregular variable with a large
amplitude in all photometric bands. In an extended series of photometric data
we found small-amplitude periodic variations in the blue colours of the star,
with a period of 2.64 days. The period was relatively stable over several
years. The amplitude of the periodic signal is 0.21 mag in U-V, 0.07 mag in
B-V, and about 0.02 mag in V-R and V-I. No periodicity was found in the V
magnitude. The relevance of this photometric period to the recently discovered
periodicity in spectral features of the star is discussed, and the hypothesis
of a hot spot is critically considered.Comment: 5 pages, 8 figures, uses new aa.cls, accepted for publication in
Astronomy and Astrophysic
Comparison of Constant and Temperature Dependent Blood Perfusion in Temperature Prediction for Superficial Hyperthermia
The purpose of this study was to determine whether prediction of the 3D temperature profile for superficial hyperthermia using constant blood perfusion model could be matched to one with a temperature dependent blood perfusion. We compared three different constant blood perfusion scenarios with one temperature dependent blood perfusion using a layered model of biological tissue consisting of skin (2 mm), fat (10 mm) and muscle (108 mm). For all four scenarios the maximum temperature of 43 °C was found in the muscle tissue in the close proximity (1 – 3 mm) of fat layer. Cumulative histograms of temperature versus volume were identical for the region of 100x100x40 mm3 under the applicator aperture for the three constant blood perfusion models. For temperature dependent blood perfusion model, 85 % of the studied region was covered with the temperature equal or higher than 40 °C in comparison with 43 % for the constant blood perfusion models. Hence this study demonstrates that constant blood perfusion scenarios cannot be matched to one with a temperature dependent blood perfusion
Adaptive multi-agent system for a washing machine production line
This paper describes the implementation of a multi-agent system in a real industrial washing machine production line aiming to integrate process and quality control, allowing the establishment of feedback control loops to support adaptation facing condition changes. For this purpose, the agent-based solution was implemented using the JADE framework, being the shared knowledge structured using a proper ontology, edited and validated in Protégé and posteriorly integrated in the multi-agent system. The solution was intensively tested using historical real production data and it is now being installed in the real production line. The preliminary results confirm the initial expectations in terms of improvement of process performance and product quality
Contamination of short GRBs by giant magnetar flares: significance of downwards revision in distance to SGR 1806-20
We highlight how the downward revision in the distance to the star cluster associated with SGR1806-20 by Bibby et al. reconciles the apparent low contamination of BATSE short GRBs by intense flares from extragalactic magnetars without recourse to modifying the frequency of one such flare per 30 years per Milky Way galaxy. We also discuss the variety in progenitor initial masses of magnetars based upon cluster ages, ranging from ~50 Msun for SGR 1806-20 and 1E 1647-455 in Westerlund 1 to ~15 Msun for SGR 1900+14 and presumably 1E 1841-045 if it originated from one of the massive RSG clusters #2 or #3
Chandra astrometry sets a tight upper limit to the proper motion of SGR 1900+14
The soft gamma-ray repeater (SGR) SGR 1900+14 lies a few arcminutes outside
the edge of the shell supernova remnant (SNR) G42.8+0.6. A physical association
between the two systems has been proposed - for this and other SGR-SNR pairs -
based on the expectation of high space velocities for SGRs in the framework of
the magnetar model. The large angular separation between the SGR and the SNR
center, coupled with the young age of the system, suggest a test of the
association with a proper motion measurement. We used a set of three
Chandra/ACIS observations of the field spanning 5 years to perform accurate
relative astrometry in order to measure the possible angular displacement of
the SGR as a function of time. Our investigation sets a 3-sigma upper limit of
70 mas/yr to the overall proper motion of the SGR. Such a value argues against
an association of SGR 1900+14 with G42.8+0.6 and adds further support to the
mounting evidence for an origin of the SGR within a nearby, compact cluster of
massive stars.Comment: Accepted for publication in The Astrophysical Journal. 4 pages in
emulate-apj styl
Design of a wideband multi-channel system for time reversal hyperthermia
Purpose: To design and test a wideband multi-channel amplifier system for time reversal (TR) microwave hyperthermia, operating in the frequency range 300 MHz-1 GHz, enabling operation in both pulsed and continuous wave regimes. This is to experimentally verify that adaptation of the heating pattern with respect to tumour size can be realised by varying the operating frequency of the antennas and potentially by using Ultra-wideband (UWB) pulse sequences instead of pure harmonic signals. Materials and methods: The proposed system consists of 12 identical channels driven by a common reference signal. The power and phase settings are applied with resolutions of 0.1W and 0.1 degrees, respectively. Using a calibration procedure, the measured output characteristics of each channel are interpolated using polynomial functions, which are then implemented into a system software algorithm driving the system feedback loop. Results: The maximum output power capability of the system varies with frequency, between 90 and 135W with a relative power error of +/- 6%. A phase error in the order of +/- 4 degrees has been achieved within the entire frequency band. Conclusions: The developed amplifier system prototype is capable of accurate power and phase delivery, over the entire frequency band of the system. The output power of the present system allows for an experimental verification of a recently developed TR-method on phantoms or animals. The system is suitable for further development for head and neck tumours, breast or extremity applications
Loop-mediated isothermal amplification (LAMP) assays for the species-specific detection of Eimeria that infect chickens
<p>Abstract</p> <p>Background</p> <p><it>Eimeria </it>parasites can cause the disease coccidiosis in poultry and even subclinical infection can incur economic loss. Diagnosis of infection predominantly relies on traditional techniques including lesion scoring and faecal microscopy despite the availability of sensitive molecular assays, largely due to cost and the requirement for specialist equipment. Despite longstanding proven efficacy these traditional techniques demand time and expertise, can be highly subjective and may under-diagnose subclinical disease. Recognition of the tight economic margins prevailing in modern poultry production and the impact of avian coccidiosis on poverty in many parts of the world has highlighted a requirement for a panel of straightforward and sensitive, but cost-effective, <it>Eimeria </it>species-specific diagnostic assays.</p> <p>Results</p> <p>Loop-mediated isothermal amplification (LAMP) is an uncomplicated, quick and relatively inexpensive diagnostic tool. In this study we have developed a panel of species-specific LAMP assays targeting the seven <it>Eimeria </it>species that infect the chicken. Each assay has been shown to be genuinely species-specific with the capacity to detect between one and ten eimerian genomes, equivalent to less than a single mature schizont. Development of a simple protocol for template DNA preparation from tissue collected post mortem with no requirement for specialist laboratory equipment supports the use of these assays in routine diagnosis of eimerian infection. Preliminary field testing supports this hypothesis.</p> <p>Conclusions</p> <p>Development of a panel of sensitive species-specific LAMP assays introduces a valuable new cost-effective tool for use in poultry husbandry.</p
Periodic Bursts of Coherent Radio Emission from an Ultracool Dwarf
We report the detection of periodic (p = 1.96 hours) bursts of extremely
bright, 100% circularly polarized, coherent radio emission from the M9 dwarf
TVLM 513-46546. Simultaneous photometric monitoring observations have
established this periodicity to be the rotation period of the dwarf. These
bursts, which were not present in previous observations of this target, confirm
that ultracool dwarfs can generate persistent levels of broadband, coherent
radio emission, associated with the presence of kG magnetic fields in a
large-scale, stable configuration. Compact sources located at the magnetic
polar regions produce highly beamed emission generated by the electron
cyclotron maser instability, the same mechanism known to generate planetary
coherent radio emission in our solar system. The narrow beams of radiation pass
our line of sight as the dwarf rotates, producing the associated periodic
bursts. The resulting radio light curves are analogous to the periodic light
curves associated with pulsar radio emission highlighting TVLM 513-46546 as the
prototype of a new class of transient radio source.Comment: 12 pages, 3 figures, accepted for publication in ApJ Letter
- …