12 research outputs found

    Washability Curves for Pyrite Removal in Coal Using Perchloroethylene as Heavy Medium

    No full text
    Pyritic sulfur is removed from raw, high sulfur coal by gravitational separation using a suitable solvent, or heavy medium. This is possible due to the inherent difference in the specific gravity of clean coal and the mineral matter in it. The effectiveness of perchloroethylene (PCE) as a heavy medium was experimentally evaluated. The most important factors governing the efficiency of this process are the quantity of clean coal yield and depyriting efficiency. It was found that the pyritic sulfur removal efficiency as well as the clean coal yield depended strongly on its particle size distribution and mineral matter content. This paper presents valuable data on the effect of particle size of coal on clean coal yield as well as pyritic sulfur removal efficiency. A master curve is obtained to determine a workable size range which gives the most optimal yield of clean and depyrited coal

    Effect of Moisture in Coal on Its Organic Sulfur Extractability

    No full text
    The extent of organic sulfur removed by the perchloroethylene desulfurization process depends upon several factors including the type of coal, the amount of catalyst present in it, and the temperature of organosulfiir extraction. Moisture in coal also plays a very important role in this extraction process. In this paper, the role played by moisture and its subsequent effect on the process efficiency has been investigated. It has been found that the moisture in coal affects the extraction process in two ways. Firstly, in presence of water, the temperature of the operation is reduced. This affects the organosulfiir extraction efficiency adversely. Secondly, the naturally available catalytic ingredients in coal, essential for the organosulfiir extraction, are soluble in water. Therefore, in presence of water, the catalytic potency of these catalytic species is lost, and thus reducing the organosulfiir extractability. The data presented in this paper are also important from the point of view of process development, because it has been experimentally established that the moisture content in coal has to be sufficiently reduced in order to improve the overall process efficiency

    Perchloroethylene Extraction Desulfurization of Low Sulfate Coals

    No full text
    The perchloroethylene coal refining process utilizes perchloroethylene (PCE) as its solvent in all phases of the precombustion desulfurization process, including wet grinding, organic sulfur removal, gravitational separation of pyrites and mineral matter, and recovery of elemental sulfur (S8). The Process is capable of producing compliance coal which emits less than 1.2?lb SOX/MBTU when burnt, starting from 5 mass percent sulfur Midwestern and Eastern U.S. coals. However, the process efficiency was found to be very strongly dependent upon the degree of weathering or the level of coal oxidation. In this paper, perchloroethylene extraction data of fresh, low-sulfate coals are summarized and critically assessed. The extraction efficiency of the organic sulfur removal ranged from 5 to 30 percent for fresh coals, while that for weathered coals ranged from 30 to 60 percent. This study provides a valuable insight into the chemical reaction mechanism of perchloroethylene desulfurization process

    Effect of Perchloroethylene Desulfurization of Coal on Its Hydrocarbon Content and Calorific Value

    No full text
    In this paper, the effect of the process on the calorific value and hydrocarbon content of coal has been studied. The effect on its hydrocarbon content was determined by comparing the ultimate analyses of raw and extracted coals. The calorific values were computed using Dulong formula. The effect on its mineral matter content was also determined by comparing the proximate analyses of raw and extracted coals. In this paper, it has been established that the organic desulfurization process selectively removes only the organic sulfur in coal without affecting the inorganic sulfur or the mineral matter content in it

    Effect of Filtration Temperature on Organic Sulfur Removal from Coal by Perchloroethylene Coal Cleaning Process

    No full text
    The perchloroethylene extraction desulfurization process removes the organic sulfur in coal via a hybrid mechanism of solvent extraction and chemical reaction. The nature and extent of the reaction is controlled by the extraction time and temperature of operation. Although the extraction temperature is kept identical for all types of coals (120°C), the organosulfur extraction time still depends upon the type of coal. If the reaction mixture is left too long in the extraction environment, the intermediate labile sulfur released by the reaction forms cross-links with the organic matter in the macromolecule of coal. This is detrimental to the process efficiency. Constant temperature has to be maintained throughout the extraction, till coal is separated from the solvent. If not, the extracted labile sulfur re-enters the coal macromolecule to form inter-penetrating polymer networks with the organic matter in coal. In this paper, it has been established that the time required for separation and isothermality of the process are crucial to maintain the reaction progressing toward sulfur and organic sulfur liberation from the macromolecule. The data presented in this paper are important from the viewpoint of process development, because the process mandates the separation of coal and solvent at the operating temperature

    Effect of Pyritic Sulfur and Mineral Matter on Organic Sulfur Removal from Coal

    No full text
    The perchloroethylene coal cleaning process uses perchloroethylene as the solvent to remove both organic and inorganic forms of sulfur without any significant loss to its calorific value. The process removes these forms of sulfur in two sequential unit steps. The objective of this investigation was to determine the exact sequence of operations in the Process. Hence, organosulfur was removed before and after depyriting and demineralizing the coal. The extent of total sulfur as well as organic sulfur removal were compared in both cases. It was found that the desulfurization is more efficient when organosulfur is extracted before pyritic sulfur and not vice versa, in the sequential removal of organic and inorganic forms of sulfur. The data presented in this paper reestablishes a fact that the mineral matter content in coal is quintessential to its organosulfur extractability

    Impregnation and Recoverability of Elemental Sulfur in Coal Using the Perchloroethylene Desulfurization Process

    No full text
    During the perchloroethylene extraction process, C-S bond cleavage reactions occur, which liberate labile sulfur from the organic matrix of coal into the solvent medium i.e., perchloroethylene, where it is dissolved and extracted. In this paper, the effect of impregnation of elemental sulfur in raw coal on its forms of sulfur analyses has been investigated. The effect of the same sulfur-impregnated coal on its organosulfur extractability has also been explored. Studies were conducted to observe whether the impregnated elemental sulfur was fully recoverable by the perchloroethylene extraction process. It was observed that sulfur can be very easily impregnated into the microstructure of coal. On the basis of tests on raw and impregnated coals, based on ASTM D-2492 standard, the impregnated sulfur reflects mostly in the form of organic sulfur. The impregnated sulfur which appears in the form of organic sulfur is fully recoverable via the perchloroethylene extractio

    Statistical Analysis of Organosulfur Extraction Data of Ohio 5/6 Coal Using the Perchloroethylene Coal Cleaning Process

    No full text
    The perchloroethylene coal cleaning process removes both organic and pyritic forms of sulfur using perchloroethylene as the solvent medium. The effect of process variables including temperature, extraction time, solvent to coal ratio and particle size of coal has been studied by a systematic 24 full factorial experimental design with a single replicate. The process was found to be strongly dependent on the type of coal. Hence, this variable was controlled by choosing one single type of coal, i.e., Ohio 5/6 (1:1 mixture of Ohio 5 and Ohio 6 coals) throughout this entire investigation. The significant effects and interactions have been quantified by F-tests. The estimates of significant effects have been obtained by Yates algorithm. Residual probability and normal probability plots have been obtained to test model adequacy. Finally, a computational model has been developed to predict the organosulfur extraction efficiency of this coal at various values of process variables. The parity plots conclude that the model has a good interpolational predictive capability

    Perchloroethylene Extraction Desulfurization of Weathered Coals

    No full text
    The perchloroethylene extraction process has proven to be an effective pre- combustion coal desulfurization process which offers a complete process package including wet grinding, organic sulfur removal, pyrite and mineral matter separation, solvent recovery, and byproducts and sulfur recovery. In this paper, coal weatherability was investigated for various Midwestern and Eastern U.S. coals, and its effect on organosulfur extractability by the perchloroethylene process was identified. Both natural and artificial weathering of these coals were experimentally investigated. A statistically significant difference in the extraction efficiency between fresh and weathered coals vas observed. A strong relation between the extractability and degree of weathering of the coal was established. The results provide a valuable insight into the process engineering of this process
    corecore