8 research outputs found

    Comparison of bulk milk antibody and youngstock serology screens for determining herd status for Bovine Viral Diarrhoea Virus

    Get PDF
    BACKGROUND: This paper examines the use of Bulk Milk antibody (BM Ab), Youngstock (YS) serology (Check Tests) and Bulk Milk PCR (BM PCR) for determining the presence or absence of animals persistently infected (PI) with Bovine Viral Diarrhoea Virus (BVDV) within a herd. Data is presented from 26 herds where average herd sizes were 343 and 98 animals for dairy and beef units respectively. Seventeen herds had sufficient data to analyse using Receiver Operating Characteristic (ROC) and probability curves enabling calculation of the sensitivity and specificity of BM Ab and YS Check tests for determining the presence of PI animals within herds in this dataset. RESULTS: Using BM Ab to screen a herd for the presence of PI animals, achieved a herd level sensitivity and specificity of 80.00 % (44.39–97.48 %) and 85.71 % (42.13–99.64 %) respectively (95 % confidence intervals quoted). Sensitivity and specificity of YS Check Tests at a cut off of 3/10 Ab positive YS were 81.82 % (48.22–97.72 %) and 66.67 % (22.28–95.67 %) respectively (95 % confidence interval). These results were achieved by comparing the screening tests to whole herd PI searches that took place 1–19 months after the initial screen with a mean interval of 8 months. Removal of this delay by taking BM samples on the day of a whole herd test and simulating a YS Check Test from the herd test data produced improvements in the reliability of the Check Tests. BM Ab sensitivity and specificity remained unchanged. However, the Check Test sensitivity and specificity improved to 90.9 % (58.72–99.77 %) and 100 % (54.07–100 %) respectively (95 % confidence interval) at a cut of off 2.5/10 Ab positive animals. Our limited BM PCR results identified 5/23 dairy farms with a positive BM PCR result; two contained milking PIs, two had non-milking PIs and another had no PIs identified. CONCLUSIONS: Delaying a PI search following an initial herd screen decreased the diagnostic accuracy and relevance of our results. With careful interpretation, longitudinal surveillance using a combination of the techniques discussed can successfully determine farm status and therefore allow changes in BVDV status to be detected early, thus enabling prompt action in the event of a BVDV incursion

    BVDV and BHV-1 Infections in Dairy Herds in Northern and Northeastern Thailand

    Get PDF
    Bulk milk samples from 220 dairy herds were collected at 9 public milk collection centres in the northeastern and northern Thailand, and a subset of 11 herds was selected for individual testing. The samples were tested for presence of antibodies to BVDV and BHV-1 using an indirect ELISA. The results from the bulk milk testing demonstrated a moderate level of exposure to BVDV and BHV-1 (73% and 67%, respectively). However, the low proportion of herds with high BVDV antibody-levels (13%) and the low within-herd seroprevalence of BVDV and BHV-1 in the 11 herds (24% and 5%, respectively), particularly among the young stock (15% and 0%, respectively), demonstrated a low prevalence of active BVDV infection and a low rate of reactivation of latent BHV-1. The presence of a self-clearance process was also indicated by the results from the individual testing. Moreover, a surprisingly low prevalence of BVDV and BHV-1 antibody-positive herds at one of the milk centres was found. This centre was established 5–10 years before the others. Our impression is that this reflects the self-clearance process, where consecutive replacement of imported infected animals without further spread has resulted in a nearly total elimination of the infections. Based on our experiences and on these results we are convinced that this process can continue if there is awareness of herd biosecurity. This is especially important in the context of a future intensification of the dairy production

    Integrative Analysis of Proteomics and DNA Methylation in Orbital Fibroblasts From Graves' Ophthalmopathy

    Get PDF
    Background: Graves’ ophthalmopathy (GO) is a frequent extrathyroidal complication of Graves’ hyperthyroidism. Orbital fibroblasts contribute to both orbital tissue inflammation and remodeling in GO, and as such are crucial cellular elements in active GO and inactive GO. However, so far it is largely unknown whether GO disease progression is associated with functional reprogramming of the orbital fibroblast effector function. Therefore, the aim of this study was to compare both the proteome and global DNA methylation patterns between orbital fibroblasts isolated from active GO, inactive GO and healthy controls. Methods: Orbital fibroblasts from inactive GO (n=5), active GO (n=4) and controls (n=5) were cultured and total protein and DNA was isolated. Labelled and fractionated proteins were analyzed with a liquid chromatography tandem-mass spectrometer (LC-MS/MS). Data are available via ProteomeXchange with identifier PXD022257. Furthermore, bisulphite-treated DNA was analyzed for methylation pattern with the Illumina Infinium Human Methylation 450K beadchip. In addition, RNA was isolated from the orbital fibroblasts for real-time quantitative (RQ)-PCR. Network and pathway analyses were performed. Results: Orbital fibroblasts from active GO displayed overexpression of proteins that are typically involved in inflammation, cellular proliferation, hyaluronan synthesis and adipogenesis, while various proteins associated with extracellular matrix (ECM) biology and fibrotic disease, were typically overexpressed in orbital fibroblasts from inactive GO. Moreover, orbital fibroblasts from active GO displayed hypermethylation of genes that linked to inflammation and hypomethylated genes that linked to adipogenesis and autoimmunity. Further analysis revealed networks that contained molecules to which both hypermethylated and hypomethylated genes were linked, including NF-κB, ERK1/2, Alp, RNA polymerase II, Akt and IFNα. In addition, NF-κB, Akt and IFNα were also identified in networks that were derived from the differentially expressed proteins. Generally, poor correlation between protein expression, DNA methylation and mRNA expression was observed. Conclusions: Both the proteomics and DNA methylation data support that orbital fibroblasts from active GO are involved in inflammation, adipogenesis, and glycosaminoglycan production, while orbital fibroblasts from inactive disease are more skewed towards an active role in extracellular matrix remodeling. This switch in orbital fibroblast effector function may have therapeutic implications and further studies into the underlying mechanism are thus warranted
    corecore