1,036 research outputs found

    Blockage Valuation in Federal Tax Law

    Get PDF

    Analysis of Self-Organized Criticality in the Olami-Feder-Christensen model and in real earthquakes

    Full text link
    We perform a new analysis on the dissipative Olami-Feder-Christensen model on a small world topology considering avalanche size differences. We show that when criticality appears the Probability Density Functions (PDFs) for the avalanche size differences at different times have fat tails with a q-Gaussian shape. This behaviour does not depend on the time interval adopted and is found also when considering energy differences between real earthquakes. Such a result can be analytically understood if the sizes (released energies) of the avalanches (earthquakes) have no correlations. Our findings support the hypothesis that a self-organized criticality mechanism with long-range interactions is at the origin of seismic events and indicate that it is not possible to predict the magnitude of the next earthquake knowing those of the previous ones.Comment: 5 pages, 3 figures. New version accepted for publication on PRE Rapid Communication

    OBSERVATIONS AND EMISSIONS OF ENERGY-ASSOCIATED OZONE PRECURSORS IN THE MID-ATLANTIC UNITED STATES

    Get PDF
    Surface ozone is formed in the presence of NOx (NO + NO2) and volatile organic compounds (VOCs) and is hazardous to human health. A better understanding of these precursors is needed for developing effective policies to improve air quality. To evaluate the year-to-year changes in source contributions to total VOCs, Positive Matrix Factorization (PMF) was used to perform source apportionment using available hourly observations from June through August at a Photochemical Assessment Monitoring Station (PAMS) in Essex, MD for each year from 2007-2015. Results suggest that while gasoline and vehicle exhaust emissions have fallen, the contribution of natural gas sources to total VOCs has risen. To investigate this increasing natural gas influence, ethane measurements from PAMS sites in Essex, MD and Washington, D.C. were examined. Following a period of decline, daytime ethane concentrations have increased significantly after 2009. This trend appears to be linked with the rapid shale gas production in upwind, neighboring states, especially Pennsylvania and West Virginia. Back-trajectory analyses similarly show that ethane concentrations at these monitors were significantly greater if air parcels had passed through counties containing a high density of unconventional natural gas wells. In addition to VOC emissions, the compressors and engines involved with hydraulic fracturing operations also emit NOx and particulate matter (PM). The Community Multi-scale Air Quality (CMAQ) Model was used to simulate air quality for the Eastern U.S. in 2020, including emissions from shale gas operations in the Appalachian Basin. Predicted concentrations of ozone and PM show the largest decreases when these natural gas resources are hypothetically used to convert coal-fired power plants, despite the increased emissions from hydraulic fracturing operations expanded into all possible shale regions in the Appalachian Basin. While not as clean as burning natural gas, emissions of NOx from coal-fired power plants can be reduced by utilizing post-combustion controls. However, even though capital investment has already been made, these controls are not always operated at optimal rates. CMAQ simulations for the Eastern U.S. in 2018 show ozone concentrations decrease by ~5 ppb when controls on coal-fired power plants limit NOx emissions to historically best rates

    Influence of perineural invasion in predicting overall survival and disease-free survival in patients With locally advanced gastric cancer

    Get PDF
    Background The aim of the present study was to evaluate the prognostic significance of perineural invasion (PNI) in locally advanced gastric cancer patients who underwent D2 gastrectomy and adjuvant chemotherapy. Methods The records of a series of 103 patients undergoing D2 gastrectomy with curative intent combined with adjuvant chemotherapy from January 2004 to December 2014 were retrospectively reviewed. Results PNI was positive in 47 (45.6%) specimens. The 1-, 3-, and 5-year overall survival rates were 81%, 55%, and 42%, respectively. The 1-, 3-, and 5-year disease-free survival (DFS) rates were 76%, 57%, and 49%, respectively. A multivariate analysis showed that age number of positive lymph nodes, T stage, and PNI were independently associated with overall survival. Regarding DFS, the multivariate analysis showed that only PNI was independently associated with DFS. Conclusions PNI and T stage and positive lymph nodes are independent markers of poor prognosis in patients with gastric cancer. PNI should be incorporated in the postoperative staging system for planning follow-up after surgery and in our opinion to propose more aggressive postoperative therapies in PNI-positive patients

    Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts

    Get PDF
    We report simultaneous laboratory measurements of seismic velocities and fluid permeability on lava flow basalt from Etna (Italy) and columnar basalt from Seljadur (Iceland). Measurements were made in a servo-controlled steady-state-flow permeameter at effective pressures from 5–80 MPa, during both increasing and decreasing pressure cycles. Selected samples were thermally stressed at temperatures up to 900 °C to induce thermal crack damage. Acoustic emission output was recorded throughout each thermal stressing experiment. At low pressure (0–10 MPa), the P-wave velocity of the columnar Seljadur basalt was 5.4 km/s, while for the Etnean lava flow basalt it was only 3.0–3.5 km/s. On increasing the pressure to 80 MPa, the velocity of Etnean basalt increased by 45%–60%, whereas that of Seljadur basalt increased by less than 2%. Furthermore, the velocity of Seljadur basalt thermally stressed to 900 °C fell by about 2.0 km/s, whereas the decrease for Etnean basalt was negligible. A similar pattern was observed in the permeability data. Permeability of Etnean basalt fell from about 7.5×10−16 m2 to about 1.5×10−16 m2 over the pressure range 5–80 MPa, while that for Seljadur basalt varied little from its initial low value of 9×10−21 m2. Again, thermal stressing significantly increased the permeability of Seljadur basalt, whilst having a negligible effect on the Etnean basalt. These results clearly indicate that the Etnean basalt contains a much higher level of crack damage than the Seljadur basalt, and hence can explain the low velocities (3–4 km/s) generally inferred from seismic tomography for the Mt. Etna volcanic edifice

    Acoustic emission waveform picking with time delay neural networks during rock deformation laboratory experiments

    Get PDF
    We report a new method using a time delay neural network to transform acoustic emission (AE) waveforms into a time series of instantaneous frequency content and permutation entropy. This permits periods of noise to be distinguished from signals. The model is trained in sequential batches, using an automated process that steadily improves signal recognition as new data are added. The model was validated using AE data from rock deformation experiments, using Darley Dale sandstone in fully drained conditions at a confining pressure of 20 MPa (approximately 800 m simulated depth). The model is initially trained by manual picking of five high-amplitude waveforms randomly selected from the dataset (experiment). This is followed by semisupervised training on a subset of 300 waveforms
    • …
    corecore