54 research outputs found
Endosulfan exposure disrupts pheromonal systems in the red-spotted newt: a mechanism for subtle effects of environmental chemicals.
Because chemicals introduced into the environment by humans can affect both long-term survivorship and reproduction of amphibians, discovering the specific mechanisms through which these chemicals act may facilitate the development of plans for amphibian conservation. We investigated the amphibian pheromonal system as a potential target of common environmental chemicals. By treating female red-spotted newts, Notophthalmus viridescens, to a commonly used insecticide, endosulfan, we found that the pheromonal system is highly susceptible to low-concentration exposure. The impairment of the pheromonal system directly led to disrupted mate choice and lowered mating success. There were no other notable physiologic or behavioral changes demonstrated by the animals at the insecticide concentrations administered. Our findings suggest that the amphibian pheromonal system is one of the systems subject to subtle negative effects of environmental chemicals
Versatile Aggressive Mimicry of Cicadas by an Australian Predatory Katydid
Background: In aggressive mimicry, a predator or parasite imitates a signal of another species in order to exploit the recipient of the signal. Some of the most remarkable examples of aggressive mimicry involve exploitation of a complex signal-response system by an unrelated predator species. Methodology/Principal Findings: We have found that predatory Chlorobalius leucoviridis katydids (Orthoptera: Tettigoniidae) can attract male cicadas (Hemiptera: Cicadidae) by imitating the species-specific wing-flick replies of sexually receptive female cicadas. This aggressive mimicry is accomplished both acoustically, with tegminal clicks, and visually, with synchronized body jerks. Remarkably, the katydids respond effectively to a variety of complex, species-specific Cicadettini songs, including songs of many cicada species that the predator has never encountered. Conclusions/Significance: We propose that the versatility of aggressive mimicry in C. leucoviridis is accomplished by exploiting general design elements common to the songs of many acoustically signaling insects that use duets in pairformation. Consideration of the mechanism of versatile mimicry in C. leucoviridis may illuminate processes driving the evolution of insect acoustic signals, which play a central role in reproductive isolation of populations and the formation of species
Inhibitory Effect of a Herbicide Formulation on Toxicity of Malathion to the Worm Eisenia fetida
8 page(s
- …