9 research outputs found
Policy Transfer Methods in RoboCup Keep-Away
This study investigates multi-agent policy transfer coupled with behavior adaptation by objective and non-objective search variants of HyperNEAT in RoboCup keep-away. For comparison, evolved behaviors were compared to those adapted by RL methods: SARSA and Q-Learning, coupled with policy transfer. Keepaway was selected as it is an established multi-agent experimental platform. Similarly, the SARSA and Q-Learning methods were selected as both have been demonstrated for boosting behavior quality with policy transfer. Keep-away behaviors were gauged in terms of effectiveness and efficiency. Effectiveness was average task performance given policy transfer, where task performance was average ball control time by the keeper team. Efficiency was average number of evaluations taken to reach a minimum task performance threshold given policy transfer
Encouraging reactivity to create robust machines
The robustness of animal behavior is unmatched by current machines, which often falter when exposed to unforeseen conditions. While animals are notably reactive to changes in their environment, machines often follow finely-tuned yet inflexible plans. Thus instead of the traditional approach of training such machines over many different unpredictable scenarios in detailed simulations (which is the most intuitive approach to inducing robustness), this work proposes to train machines to be reactive to their environment. The idea is that robustness may result not from detailed internal models or finely-tuned control policies but from cautious exploratory behavior. Supporting this hypothesis, robots trained to navigate mazes with a reactive disposition prove more robust than those trained over many trials yet not rewarded for reactive behavior in both simulated tests and when embodied in real robots. The conclusion is that robustness may neither require an accurate model nor finely calibrated behavior
HyperNEAT: The First Five Years
HyperNEAT, which stands for Hypercube-based NeuroEvolution of Augmenting Topologies, is a method for evolving indirectly-encoded artificial neural networks (ANNs) that was first introduced in 2007. By exploiting a unique indirect encoding called Compositional Pattern Producing Networks (CPPNs) that does not require a typical developmental stage, HyperNEAT introduced several novel capabilities to the field of neuroevolution (i.e. evolving artificial neural networks). Among these, (1) large ANNs can be compactly encoded by small genomes, (2) the size and resolution of evolved ANNs can scale up or down even after training is completed, and (3) neural structure can be evolved to exploit problem geometry. Five years after its introduction, researchers have leveraged these capabilities to produce a broad range of successful experiments and extensions that highlight the potential for future research to build further on the ideas introduced by HyperNEAT. This chapter reviews these first 5years of research that builds upon this approach, and culminates with thoughts on promising future directions
Scalable multiagent learning through indirect encoding of policy geometry
Multiagent systems present many challenging, real-world problems to artificial intelligence. Because it is difficult to engineer the behaviors of multiple cooperating agents by hand, multiagent learning has become a popular approach to their design. While there are a variety of traditional approaches to multiagent learning, many suffer from increased computational costs for large teams and the problem of reinvention (that is, the inability to recognize that certain skills are shared by some or all team member). This paper presents an alternative approach to multiagent learning called multiagent HyperNEAT that represents the team as a pattern of policies rather than as a set of individual agents. The main idea is that an agent\u27s location within a canonical team layout (which can be physical, such as positions on a sports team, or conceptual, such as an agent\u27s relative speed) tends to dictate its role within that team. This paper introduces the term policy geometry to describe this relationship between role and position on the team. Interestingly, such patterns effectively represent up to an infinite number of multiagent policies that can be sampled from the policy geometry as needed to allow training very large teams or, in some cases, scaling up the size of a team without additional learning. In this paper, multiagent HyperNEAT is compared to a traditional learning method, multiagent Sarsa(λ), in a predator-prey domain, where it demonstrates its ability to train large teams. © 2013 Springer-Verlag Berlin Heidelberg