415 research outputs found

    Spin-dependent transmission in waveguides with periodically modulated strength of the spin-orbit interaction

    Full text link
    The electron transmission TT is evaluated through waveguides, in which the strength of the spin-orbit interaction(SOI) α\alpha is varied periodically, using the transfer-matrix technique. It is shown that TT exhibits a {\it spin-transistor} action, as a function of α\alpha or of the length of one of the two subunits of the unit cell, provided only one mode is allowed to propagate in the waveguide. A similar but not periodic behavior occurs as a function of the incident electron energy. A transparent formula for TT through one unit is obtained and helps explain its periodic behavior. The structure considered is a good candidate for the establishment of a realistic spin transistor

    Spin-depedent transmission of holes through periodically modulated diluted magnetic semiconductor waveguides

    Full text link
    We study spin transport of holes through stubless or stubbed waveguides modulated periodically by diluted magnetic semiconductor (DMS) sections of width b1 . Injected holes of up (down) spin feel a periodically modulated barrier (well) potential in the DMS sections and have different transmission (T) coefficients. T oscillates with b1 for spin-down and decreases fast for spin-up holes while the relative polarization Pr depends nearly periodically on the stub height. Using asymmetric stubs leads to a nearly square-wave pattern in T and to wide plateaus in Pr . T oscillates with the length between the DMS sections. With two DMS sections per unit, T shows periodically wide gaps for spin-down holes when a DMS width is varied. The results can be used to create efficient spin filters.Comment: 5figure

    Magneto-optical transport properties of monolayer phosphorene

    Full text link
    The electronic properties of monolayer phosphorene are exotic due to its puckered structure and large intrinsic direct band gap. We derive and discuss its band structure in the presence of a perpendicular magnetic field. Further, we evaluate the magneto-optical Hall and longitudinal optical conductivities, as functions of temperature, magnetic field, and Fermi energy, and show that they are strongly influenced by the magnetic field. The imaginary part of the former and the real part of the latter exhibit regular {\it interband} oscillations as functions of the frequency ω\omega in the range ω1.52\hslash\omega\sim 1.5-2 eV. Strong {\it intraband} responses in the latter and week ones in the former occur at much lower frequencies. The magneto-optical response can be tuned in the microwave-to-terahertz and visible frequency ranges in contrast with a conventional two-dimensional electron gas or graphene in which the response is limited to the terahertz regime. This ability to isolate carriers in an anisotropic structure may make phosphorene a promising candidate for new optical devices.Comment: 7 pages and 8 figure

    Extra Dirac points in the energy spectrum for superlattices on single-layer graphene

    Full text link
    We investigate the emergence of extra Dirac points in the electronic structure of a periodically spaced barrier system, i.e., a superlattice, on single-layer graphene, using a Dirac-type Hamiltonian. Using square barriers allows us to find analytic expressions for the occurrence and location of these new Dirac points in k-space and for the renormalization of the electron velocity near them in the low-energy range. In the general case of unequal barrier and well widths the new Dirac points move away from the Fermi level and for given heights of the potential barriers there is a minimum and maximum barrier width outside of which the new Dirac points disappear. The effect of these extra Dirac points on the density of states and on the conductivity is investigated.Comment: 7 pages, 8 figures, accepted for publication in Phys. Rev.
    corecore