4 research outputs found

    Soil warming accelerates decomposition of fine woody debris

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Plant and Soil 356 (2012): 405-417, doi:10.1007/s11104-012-1130-x.Soil warming from global climate change could increase decomposition of fine woody debris (FWD), but debris size and quality may mitigate this effect. The goal of this study was to investigate the effect of soil warming on decomposition of fine woody debris of differing size and quality. We placed FWD of two size classes (2 × 20 cm and 4 × 40 cm) and four species (Acer saccharum, Betula lenta, Quercus rubra and Tsuga canadensis) in a soil warming and ambient area at Harvard Forest in central Massachusetts. We collected the debris from each area over two years and measured mass loss and lignin concentration. Warming increased mass loss for all species and size classes (by as much as 30%), but larger debris and debris with higher initial lignin content decomposed slower than smaller debris and debris with lower initial lignin content. Lignin degradation did not follow the same trends as mass loss. Lignin loss from the most lignin-rich species, T. canadensis, was the highest despite the fact that it lost mass the slowest. Our results suggest that soil warming will increase decomposition of FWD in temperate forests. It is imperative that future models and policy efforts account for this potential shift in the carbon storage pool

    Soil carbon model Yasso07 graphical user interface

    No full text
    M. Tuomi; J. Rasinmaki; A. Repo; P. Vanhala & J. Liski, 'Soil carbon model Yasso07 graphical user interface', Environmental Modelling & Software, Vol. 26 (11): 1358-1362, first published online 8 June 2011. The version of record is available online at doi: http://dx.doi.org/10.1016/j.envsoft.2011.05.009 © 2011 Elsevier Ltd. All rights reserved.In this article, we present a graphical user interface software for the litter decomposition and soil carbon model Yasso07 and an overview of the principles and formulae it is based on. The software can be used to test the model and use it in simple applications. Yasso07 is applicable to upland soils of different ecosystems worldwide, because it has been developed using data covering the global climate conditions and representing various ecosystem types. As input information, Yasso07 requires data on litter input to soil, climate conditions, and land-use change if any. The model predictions are given as probability densities representing the uncertainties in the parameter values of the model and those in the input data - the user interface calculates these densities using a built-in Monte Carlo simulation.Peer reviewe
    corecore