3,436 research outputs found
Structure Functions and Pair Correlations of the Quark-Gluon Plasma
Recent experiments at RHIC and theoretical considerations indicate that the
quark-gluon plasma, present in the fireball of relativistic heavy-ion
collisions, might be in a liquid phase. The liquid state can be identified by
characteristic correlation and structure functions. Here definitions of the
structure functions and pair correlations of the quark-gluon plasma are
presented as well as perturbative results. These definitions might be useful
for verifying the quark-gluon-plasma liquid in QCD lattice calculations.Comment: 9 pages, 1 figure, revised version (new remark on the coupling
parameter on page 2), to be published in Phys. Rev.
Efficient calculation of the Greeks for exponential Lévy processes: an application of measure valued differentiation
Monte Carlo simulation methods have become more and more important in the financial sector in the past years. In this paper, we introduce a new simulation method for the estimation of the derivatives of prices of financial contracts with respect to (w.r.t.) certain distributional parameters called the ‘Greeks’. In particular, we assume that the underlying financial process is a Lévy-type process in discrete time. Our method is based on the Measure-Valued Differentiation (MVD) approach, which allows representation of derivatives as differences of two processes, called the phantoms. We discuss the applicability of MVD for different types of option pay-offs in combination with different types of models of the underlying and provide a framework for the applicability of MVD for path-dependent pay-off functions, as Lookback Options or Asian Options
What can we learn from electromagnetic plasmas about the quark-gluon plasma?
Ultra-relativistic electromagnetic plasmas can be used for improving our
understanding of the quark-gluon plasma. In the weakly coupled regime both
plasmas can be described by transport theoretical and quantum field theoretical
methods leading to similar results for the plasma properties (dielectric
tensor, dispersion relations, plasma frequency, Debye screening, transport
coefficients, damping and particle production rates). In particular, future
experiments with ultra-relativistic electron-positron plasmas in ultra-strong
laser fields might open the possibility to test these predictions, e.g. the
existence of a new fermionic plasma wave (plasmino). In the strongly coupled
regime electromagnetic plasmas such as complex plasmas can be used as models or
at least analogies for the quark-gluon plasma possibly produced in relativistic
heavy-ion experiments. For example, pair correlation functions can be used to
investigate the equation of state and cross section enhancement for parton
scattering can be explained.Comment: 8 pages, 7 figures, talk given at the SCCS 2008 International
Conference, 29 July - 2 August 2008, Camerino, Ital
The Quark-Gluon-Plasma Liquid
The quark-gluon plasma close to the critical temperature is a strongly
interacting system. Using strongly coupled, classical, non-relativistic plasmas
as an analogy, we argue that the quark-gluon plasma is in the liquid phase.
This allows to understand experimental observations in ultrarelativistic
heavy-ion collisions and to interpret lattice QCD results. It also supports the
indications of the presence of a strongly coupled QGP in ultrarelativistic
heavy-ion collisions.Comment: 8 pages, 2 figures, final version, to bepublished in J. Phys.
Ward Identities in Non-equilibrium QED
We verify the QED Ward identity for the two- and three -point functions at
non-equilibrium in the HTL limit. We use the Keldysh formalism of real time
finite temperature field theory. We obtain an identity of the same form as the
Ward identity for a set of one loop self-energy and one loop three-point vertex
diagrams which are constructed from HTL effective propagators and vertices.Comment: 19 pages, RevTex, 4 PostScript figures, revised version to be
published in Phys. Rev.
Decay of a Yukawa fermion at finite temperature and applications to leptogenesis
We calculate the decay rate of a Yukawa fermion in a thermal bath using
finite temperature cutting rules and effective Green's functions according to
the hard thermal loop resummation technique. We apply this result to the decay
of a heavy Majorana neutrino in leptogenesis. Compared to the usual approach
where thermal masses are inserted into the kinematics of final states, we find
that deviations arise through two different leptonic dispersion relations. The
decay rate differs from the usual approach by more than one order of magnitude
in the temperature range which is interesting for the weak washout regime. We
discuss how to arrive at consistent finite temperature treatments of
leptogenesis.Comment: 16 pages, 5 figure
Conserved Density Fluctuation and Temporal Correlation Function in HTL Perturbation Theory
Considering recently developed Hard Thermal Loop perturbation theory that
takes into account the effect of the variation of the external field through
the fluctuations of a conserved quantity we calculate the temporal component of
the Euclidian correlation function in the vector channel. The results are found
to be in good agreement with the very recent results obtained within the
quenched approximation of QCD and small values of the quark mass ()
on improved lattices of size at (),
(), and (), where is
the temporal extent of the lattice. This suggests that the results from lattice
QCD and Hard Thermal Loop perturbation theory are in close proximity for a
quantity associated with the conserved density fluctuation.Comment: 16 pages, 4 figures; One para added in introduction, Fig 1 modified;
Accepted in Phys. Rev.
Field Theoretic Description of Ultrarelativistic Electron-Positron Plasmas
Ultrarelativistic electron-positron plasmas can be produced in high-intensity
laser fields and play a role in various astrophysical situations. Their
properties can be calculated using QED at finite temperature. Here we will use
perturbative QED at finite temperature for calculating various important
properties, such as the equation of state, dispersion relations of collective
plasma modes of photons and electrons, Debye screening, damping rates, mean
free paths, collision times, transport coefficients, and particle production
rates, of ultrarelativistic electron-positron plasmas. In particular, we will
focus on electron-positron plasmas produced with ultra-strong lasers.Comment: 13 pages, 7 figures, 1 table, published versio
Advances in modelling subglacial lakes and their interaction with the Antarctic ice sheet
Subglacial lakes have long been considered hydraulically isolated water bodies underneath ice sheets. This view changed radically with the advent of repeat-pass satellite altimetry and the discovery of multiple lake discharges and water infill, associated with water transfer over distances of more than 200 km. The presence of subglacial lakes also influences ice dynamics, leading to glacier acceleration. Furthermore, subglacial melting under the Antarctic ice sheet is more widespread than previously thought, and subglacial melt rates may explain the availability for water storage in subglacial lakes and water transport. Modelling of subglacial water discharge in subglacial lakes essentially follows hydraulics of subglacial channels on a hard bed, where ice sheet surface slope is a major control on triggering subglacial lake discharge. Recent evidence also points to the development of channels in deformable sediment in West Antarctica, with significant water exchanges between till and ice. Most active lakes drain over short time scales and respond rapidly to upstream variations. Several Antarctic subglacial lakes exhibit complex interactions with the ice sheet due to water circulation. Subglacial lakes can therefore—from a modelling point of view—be seen as confined small oceans underneath an imbedded ice shelf.</jats:p
- …