685 research outputs found
A one dimensional model for the prediction of extraction yields in a two phases modified twin-screw extruder
Solid/liquid extraction is performed on raw plant substrate with a modified twin-screw extruder (TSE) used as a thermo-mecanochemical reactor. Visual observations and experimental residence time distributions (RTD) are used to develop a solid transport model based on classical chemical engineering method. Modeled and experimental residence times are compared. The transport model is then coupled with a reactive extraction model in order to predict extraction yields
Two phase residence time distribution in a modified twin screw extruder
Biomass fractionation is performed with a modified Clextral twin-screw extruder used as a thermo-mechano-chemical reactor. This new process is firstly analyzed. Visual observations, residence time distributions, and global mass balances are used to obtain information about the process phenomena and their coupling. Residence time distributions (RTD) classical models are adopted to represent the experimental plots. The influence of continuous and discrete process parameters upon the RTD of the solid and liquid phases is analyzed
Design of metallic nanoparticles gratings for filtering properties in the visible spectrum
Plasmonic resonances in metallic nanoparticles are exploited to create
efficient optical filtering functions. A Finite Element Method is used to model
metallic nanoparticles gratings. The accuracy of this method is shown by
comparing numerical results with measurements on a two-dimensional grating of
gold nanocylinders with elliptic cross section. Then a parametric analysis is
performed in order to design efficient filters with polarization dependent
properties together with high transparency over the visible range. The behavior
of nanoparticle gratings is also modelled using the Maxwell-Garnett
homogenization theory and analyzed by comparison with the diffraction by a
single nanoparticle. The proposed structures are intended to be included in
optical systems which could find innovative applications.Comment: submitted to Applied Optic
A modal model for diffraction gratings
A description of an algorithm for a rather general modal grating calculation
is presented. Arbitrary profiles, depth, and permittivity are allowed. Gratings
built up from sub-gratings are allowed, as are coatings on the sidewalls of
lines, and arbitrary complex structure. Conical angles and good conductors are
supported
Dynamic effective anisotropy: Asymptotics, simulations, and microwave experiments with dielectric fibers
International audienceWe investigate dynamic effective anisotropy in photonic crystals (PCs) through a combination of an effective medium theory, which is a high-frequency homogenization (HFH) method explicitly developed to operate for short waves, as well as through numerical simulations and microwave experiments. The HFH yields accurate predictions of the effective anisotropic properties of periodic structures when the wavelength is of comparable order to the pitch of the array; specifically, we investigate a square array of pitch 2 cm consisting of dielectric rods of radius 0.5 cm and refractive index n=6√ within an air matrix. This behaves as an effective medium, with strong artificial anisotropy, at a frequency corresponding to a flat band emerging from a Dirac-like point in transverse magnetic (TM) polarization. At this frequency, highly directive emission is predicted for an electric source placed inside this PC, and this artificial anisotropy can be shown to coincide with a change of character of the underlying effective equation from isotropic to unidirective, with coefficients of markedly different magnitudes appearing in the effective equation tensor. In transverse electric (TE) polarization, we note a second radical change of character of the underlying effective equation, this time from elliptic to hyperbolic, near a frequency at which a saddle point occurs in the corresponding dispersion curves. Delicate microwave experiments are performed in both polarizations for such a PC consisting of 80 rods, and we demonstrate that a directive emission in the form of a + (respectively, an X) is indeed seen experimentally at the predicted frequency 9.5 GHz in TM polarization (respectively, 5.9 GHz in TE polarization). These are clearly dynamic effects since in the quasistatic regime the PC just behaves as an isotropic medium
Osmoregulators proline and glycine betaine counteract salinity stress in canola
Salt inundation leads to increased salinization of arable land in many arid and semi-arid regions. Until genetic solutions are found farmers and growers must either abandon salt-affected fields or use agronomic treatments that alleviate salt stress symptoms. Here, field experiments were carried out to study the effect of the osmoregulators proline at 200 mg L-1 and glycine betaine at 400 mg L-1 in counteracting the harmful effect of soil salinity stress on canola plants grown in Egypt. We assessed growth characteristics, yield and biochemical constituents. Results show first that all growth characters decreased with increasing salinity stress but applied osmoregulators alleviated these negative effects. Second, salinity stress decreased photosynthetic pigments, K and P contents, whilst increasing proline, soluble sugars, ascorbic acid, Na and Cl contents. Third, application of osmoregulators without salt stress increased photosynthetic pigments, proline, soluble sugars, N, K and P contents whilst decreasing Na and Cl contents. It is concluded that the exogenously applied osmoregulators glycine betaine and proline can fully or partially counteract the harmful effect of salinity stress on growth and yield of canola.© INRA and Springer-Verlag, France 2012
Surfaces roughness effects on the transmission of Gaussian beams by anisotropic parallel plates
Influence of the plate surfaces roughness in precise ellipsometry experiments
is studied. The realistic case of a Gaussian laser beam crossing a uniaxial
platelet is considered. Expression for the transmittance is determined using
the first order perturbation theory. In this frame, it is shown that
interference takes place between the specular transmitted beam and the
scattered field. This effect is due to the angular distribution of the Gaussian
beam and is of first order in the roughness over wavelength ratio. As an
application, a numerical simulation of the effects of quartz roughness surfaces
at normal incidence is provided. The interference term is found to be strongly
connected to the random nature of the surface roughness.Comment: 18 pages, Journal of Physics D: Applied Physics, volume 36, issue 21,
pages 2697 - 270
A hybrid fuzzy sliding-mode control for a three-phase shunt active power filter
This document is the Accepted Manuscript version of the following article: Mohamed Abdeldjabbar Kouadria, Tayeb Allaoui, and Mouloud Denai, ‘A hybrid fuzzy sliding-mode control for a three-phase shunt active power filter’, Energy Systems, Vol. 8 (2): 297-308, March 2016. The final publication is available at Springer via http://dx.doi.org/10.1007/s12667-016-0198-4.This paper describes the hybrid fuzzy sliding-mode control (HFSMC) for a three phase shunt active shunt filter for the power quality improvement. The Power Quality (PQ) problems in power distribution systems are not new but only recently the effects of these problems have gained public awareness. These non-linear loads are constructed by nonlinear devices in which the current is not proportional to the applied voltage. For the harmonic elimination different methods are used, but in this paper a novel fuzzy logic controller for a three-phase shunt active power filter for the power quality improvement such as reactive power and harmonic current compensation generated due to nonlinear loads. The hybrid fuzzy sliding-mode control (HFSMC) approach is proposed such that it can be applied with advantages to both fuzzy and sliding-mode controller. Simulation results are presented to demonstrate the effectiveness of the control strategy. The results are found to be quite satisfactory to mitigate harmonic distortions, reactive power compensation and power quality improvement.Peer reviewedFinal Accepted Versio
- …