51,408 research outputs found
The identification of histidine ligands to cytochrome a in cytochrome c oxidase
A histidine auxotroph of Saccharomyces cerevisiae has been used to metabolically incorporate [1,3-15N2] histidine into yeast cytochrome c oxidase. Electron nuclear double resonance (ENDOR) spectroscopy of cytochrome a in the [15N]histidine-substituted enzyme reveals an ENDOR signal which can be assigned to hyperfine coupling of a histidine 15N with the low-spin heme, thereby unambiguously identifying histidine as an axial ligand to this cytochrome. Comparison of this result with similar ENDOR data obtained on two 15N-substituted bisimidazole model compounds, metmyoglobin-[15N]imidazole and bis[15N]imidazole tetraphenyl porphyrin, provides strong evidence for bisimidazole coordination in cytochrome a
Theory of enhanced performance emerging in a sparsely-connected competitive population
We provide an analytic theory to explain Anghel et al.'s recent numerical
finding whereby a maximum in the global performance emerges for a
sparsely-connected competitive population [Phys. Rev. Lett. 92, 058701 (2004)].
We show that the effect originates in the highly-correlated dynamics of
strategy choice, and can be significantly enhanced using a simple modification
to the model.Comment: This revised version will appear in PRE as a Rapid Com
Lattice dynamics and electron-phonon interaction in (3,3) carbon nanotubes
We present a detailed study of the lattice dynamics and electron-phonon
coupling for a (3,3) carbon nanotube which belongs to the class of small
diameter based nanotubes which have recently been claimed to be
superconducting. We treat the electronic and phononic degrees of freedom
completely by modern ab-initio methods without involving approximations beyond
the local density approximation. Using density functional perturbation theory
we find a mean-field Peierls transition temperature of approx 40K which is an
order of magnitude larger than the calculated superconducting transition
temperature. Thus in (3,3) tubes the Peierls transition might compete with
superconductivity. The Peierls instability is related to the special 2k_F
nesting feature of the Fermi surface. Due to the special topology of the (n,n)
tubes also a q=0 coupling between the two bands crossing the Fermi energy at
k_F is possible which leads to a phonon softening at the Gamma point.Comment: 4 pages, 3 figures; to be published in Phys. Rev. Let
How the Charge Can Affect the Formation of Gravastars
In recent work we physically interpreted a special gravastar solution
characterized by a zero Schwarzschild mass. In fact, in that case, none
gravastar was formed and the shell expanded, leaving behind a de Sitter or a
Minkowski spacetime, or collapsed without forming an event horizon, originating
what we called a massive non-gravitational object. This object has two
components of non zero mass but the exterior spacetime is Minkowski or de
Sitter. One of the component is a massive thin shell and the other one is de
Sitter spacetime inside. The total mass of this object is zero Schwarzschild
mass, which characterizes an exterior vacuum spacetime. Here, we extend this
study to the case where we have a charged shell. Now, the exterior is a
Reissner-Nordstr\"om spacetime and, depending on the parameter
of the equation of state of the shell, and the charge, a
gravastar structure can be formed. We have found that the presence of the
charge contributes to the stability of the gravastar, if the charge is greater
than a critical value. Otherwise, a massive non-gravitational object is formed
for small charges.Comment: 17 pages and 7 figures, several typos corrected, accepted for
publication in JCA
Pre-Congestion Notification (PCN) Architecture
This document describes a general architecture for flow admission and termination based on pre-congestion information in order to protect the quality of service of established, inelastic flows within a single Diffserv domain.\u
- …