26 research outputs found
The angiogenic factor midkine is regulated by dexamethasone and retinoic acid during alveolarization and in alveolar epithelial cells
<p>Abstract</p> <p>Background</p> <p>A precise balance exists between the actions of endogenous glucocorticoids (GC) and retinoids to promote normal lung development, in particular during alveolarization. The mechanisms controlling this balance are largely unknown, but recent evidence suggests that midkine (MK), a retinoic acid-regulated, pro-angiogenic growth factor, may function as a critical regulator. The purpose of this study was to examine regulation of MK by GC and RA during postnatal alveolar formation in rats.</p> <p>Methods</p> <p>Newborn rats were treated with dexamethasone (DEX) and/or all-trans-retinoic acid (RA) during the first two weeks of life. Lung morphology was assessed by light microscopy and radial alveolar counts. MK mRNA and protein expression in response to different treatment were determined by Northern and Western blots. In addition, MK protein expression in cultured human alveolar type 2-like cells treated with DEX and RA was also determined.</p> <p>Results</p> <p>Lung histology confirmed that DEX treatment inhibited and RA treatment stimulated alveolar formation, whereas concurrent administration of RA with DEX prevented the DEX effects. During normal development, MK expression was maximal during the period of alveolarization from postnatal day 5 (PN5) to PN15. DEX treatment of rat pups decreased, and RA treatment increased lung MK expression, whereas concurrent DEX+RA treatment prevented the DEX-induced decrease in MK expression. Using human alveolar type 2 (AT2)-like cells differentiated in culture, we confirmed that DEX and cAMP decreased, and RA increased MK expression.</p> <p>Conclusion</p> <p>We conclude that MK is expressed by AT2 cells, and is differentially regulated by corticosteroid and retinoid treatment in a manner consistent with hormonal effects on alveolarization during postnatal lung development.</p
Recommended from our members
CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells
Abstract Chronic lung disease of prematurity/bronchopulmonary dysplasia (BPD) is the leading cause of perinatal morbidity in developed countries. Inflammation is a prominent finding. Currently available interventions have associated toxicities and limited efficacy. While BPD often resolves in childhood, survivors of preterm birth are at risk for acquired respiratory disease in early life and are more likely to develop chronic obstructive pulmonary disease (COPD) in adulthood. We previously cloned Crispld2 (Lgl1), a glucocorticoidâregulated mesenchymal secretory protein that modulates lung branching and alveogenesis through mesenchymalâepithelial interactions. Absence of Crispld2 is embryonic lethal. Heterozygous Crispld2+/â mice display features of BPD, including distal airspace enlargement, disruption of elastin, and neonatal lung inflammation. CRISPLD2 also plays a role in human fetal lung fibroblast cell expansion, migration, and mesenchymalâepithelial signaling. This study assessed the effects of endogenous and exogenous CRISPLD2 on expression of proinflammatory mediators in human fetal and adult (normal and COPD) lung fibroblasts and epithelial cells. CRISPLD2 expression was upregulated in a lipopolysaccharide (LPS)âinduced human fetal lung fibroblast line (MRC5). LPSâinduced upregulation of the proinflammatory cytokines ILâ8 and CCL2 was exacerbated in MRC5âCRISPLD2 knockdown cells. siRNA suppression of endogenous CRISPLD2 in adult lung fibroblasts (HLFs) led to augmented expression of ILâ8, ILâ6, CCL2. LPSâstimulated expression of proinflammatory mediators by human lung epithelial HAEoâ cells was attenuated by purified secretory CRISPLD2. RNA sequencing results from HLFâCRISPLD2 knockdown suggest roles for CRISPLD2 in extracellular matrix and in inflammation. Our data suggest that suppression of CRISPLD2 increases the risk of lung inflammation in early life and adulthood
Estrogen aggravates inflammation in Pseudomonas aeruginosa pneumonia in cystic fibrosis mice
<p>Abstract</p> <p>Background</p> <p>Among patients with cystic fibrosis (CF), females have worse pulmonary function and survival than males, primarily due to chronic lung inflammation and infection with <it>Pseudomonas aeruginosa </it>(<it>P. aeruginosa</it>). A role for gender hormones in the causation of the CF "gender gap" has been proposed. The female gender hormone 17β-estradiol (E2) plays a complex immunomodulatory role in humans and in animal models of disease, suppressing inflammation in some situations while enhancing it in others. Helper T-cells were long thought to belong exclusively to either T helper type 1 (Th1) or type 2 (Th2) lineages. However, a distinct lineage named Th17 is now recognized that is induced by interleukin (IL)-23 to produce IL-17 and other pro-inflammatory Th17 effector molecules. Recent evidence suggests a central role for the IL-23/IL-17 pathway in the pathogenesis of CF lung inflammation. We used a mouse model to test the hypothesis that E2 aggravates the CF lung inflammation that occurs in response to airway infection with <it>P. aeruginosa </it>by a Th17-mediated mechanism.</p> <p>Results</p> <p>Exogenous E2 caused adult male CF mice with pneumonia due to a mucoid CF clinical isolate, the <it>P. aeruginosa </it>strain PA508 (PA508), to develop more severe manifestations of inflammation in both lung tissue and in bronchial alveolar lavage (BAL) fluid, with increased total white blood cell counts and differential and absolute cell counts of polymorphonuclear leukocytes (neutrophils). Inflammatory infiltrates and mucin production were increased on histology. Increased lung tissue mRNA levels for IL-23 and IL-17 were accompanied by elevated protein levels of Th17-associated pro-inflammatory mediators in BAL fluid. The burden of PA508 bacteria was increased in lung tissue homogenate and in BAL fluid, and there was a virtual elimination in lung tissue of mRNA for lactoferrin, an antimicrobial peptide active against <it>P. aeruginosa </it>in vitro.</p> <p>Conclusions</p> <p>Our data show that E2 increases the severity of PA508 pneumonia in adult CF male mice, and suggest two potential mechanisms: enhancement of Th17-regulated inflammation and suppression of innate antibacterial defences. Although this animal model does not recapitulate all aspects of human CF lung disease, our present findings argue for further investigation of the effects of E2 on inflammation and infection with <it>P. aeruginosa </it>in the CF lung.</p
The Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory is a second generation water Cherenkov
detector designed to determine whether the currently observed solar neutrino
deficit is a result of neutrino oscillations. The detector is unique in its use
of D2O as a detection medium, permitting it to make a solar model-independent
test of the neutrino oscillation hypothesis by comparison of the charged- and
neutral-current interaction rates. In this paper the physical properties,
construction, and preliminary operation of the Sudbury Neutrino Observatory are
described. Data and predicted operating parameters are provided whenever
possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and
epsf style files. For additional information about SNO see
http://www.sno.phy.queensu.ca . This version has some new reference
Glucose intolerance in children with cystic fibrosis
Objective: To evaluate the relations among glucose intolerance, genotype, and exocrine pancreatic status in patients with cystic fibrosis (CF). Study design: Data on 335 patients <18 years of age were from the Toronto CF database. A modified oral glucose tolerance test was given to 94 patients 10 to 18 years of age without recognized CF-related diabetes. CF transmembrane conductance regulator mutations and exocrine pancreatic status were determined for all patients. Results: CF-related diabetes was clinically recognized in 9 of 335 (2.7%) patients <18 years of age, all of whom were pancreatic insufficient, and 8 of 9 had severe (classes I through III) mutations on both alleles. The ninth patient had unidentified mutations. Although all patients given the oral glucose tolerance test were asymptomatic and had normal fasting blood glucose, 16 of 94 (17%) had impaired glucose tolerance and 4 of 94 (4.3%) had CF-related diabetes without fasting hyperglycemia. Abnormal glucose tolerance was associated exclusively with severe mutations and exocrine pancreatic insufficiency. Glycosylated hemoglobin (HbA 1C) levels did not correlate with glucose tolerance results. Conclusions: Screening of pancreatic-insufficient, adolescent patients with CF identified more with abnormal oral glucose tolerance than was suspected clinically and is recommended as a routine practice. HbA 1C was not useful in screening for CF-related glucose intolerance.link_to_subscribed_fulltex