346 research outputs found

    The use of a nutrient quality score is effective to assess the overall nutritional value of three brassica microgreens

    Get PDF
    Microgreens have immense potential for improving dietary patterns, but little information is available regarding their overall nutritional value. We evaluated the nutritional traits of three hydroponically grown Brassica microgreens by using a Nutrient Quality Score. Micro cauliflower, micro broccoli and micro broccoli raab were grown using nutrient solutions with three different NH4:NO3 molar ratios (5:95, 15:85, and 25:75). Protein, dietary fiber, β-carotene, α-tocopherol and mineral elements (Ca, K, Mg, Fe, Zn, Cu, Mn, and Na) were analyzed. We developed the Nutrient Quality Score (NQS 11.1) on the basis of 11 desirable nutrients and 1 nutrient (sodium) to be limited. All Brassica microgreens are an excellent source of Vitamins A and E (more than 20% of the daily reference value-DRV), as well as a good source of calcium and manganese (10-19% of the DRV). Micro cauliflower showed a NQS 11.1 at 47% higher than micro broccoli raab and micro broccoli. Using NH4:NO3 25:75 molar ratio, the average score was 27% higher than other molar ratios. In all cases, the microgreens in the present study showed a higher NQS 11.1 than their mature counterpart (on the basis of data from the United States Department of Agriculture), highlighting that the score of micro cauliflower was about six-fold higher than mature cauliflower. In conclusion, the NQS 11.1 was useful for assessing the overall nutritional quality of the three Brassica microgreens, instead of simply quantifying nutrient content, in order to compare a single nutrient among different genotypes. Furthermore, the results highlight that the micro broccoli raab, micro broccoli and micro cauliflower in this study can be considered nutrient-rich vegetables that are able to improve dietary patterns more effectively than their mature counterparts

    A methodology to qualitatively select upcycled building materials from urban and industrial waste

    Get PDF
    The rising concern about climate change and other challenges faced by the planet led society to look for different design solutions and approaches towards a more balanced relationship between the built and natural environment. The circular economy is an effective alternative to the linear economic model inspired by natural metabolisms and the circular use of resources. This research explores how innovative strategies can be integrated for evaluating local urban and industrial wastes into sustainable building materials. A literature review is conducted focusing on circular design strategies, re-use, recycle, and waste transformation processes. Then, a methodology for the selection of upcycled and re-used building materials is developed based on Ashby’s method. A total of thirty-five types of partition walls, which include plastic, wood, paper, steel, aluminium, and agricultural wastes, are evaluated using a multi-criteria decision aid (M-MACBETH). Among these solutions, ten types of walls show high-performance thermal and sound isolation, fourteen types are effective for coating, and two exhibit structural reliability. Regardless of their functional limitations, the proposed solutions based on waste materials bear great potential within the construction industry.info:eu-repo/semantics/publishedVersio

    Enhancing Radiotherapy by Lipid Nanocapsule-Mediated Delivery of Amphiphilic Gold Nanoparticles to Intracellular Membranes

    Get PDF
    Amphiphilic gold nanoparticles (amph-NPs), composed of gold cores surrounded by an amphiphilic mixed organic ligand shell, are capable of embedding within and traversing lipid membranes. Here we describe a strategy using crosslink-stabilized lipid nanocapsules (NCs) as carriers to transport such membrane-penetrating particles into tumor cells and promote their transfer to intracellular membranes for enhanced radiotherapy of cancer. We synthesized and characterized interbilayer-crosslinked multilamellar lipid vesicles (ICMVs) carrying amph-NPs embedded in the capsule walls, forming Au-NCs. Confocal and electron microscopies revealed that the intracellular distribution of amph-NPs within melanoma and breast tumor cells following uptake of free particles vs Au-NCs was quite distinct and that amph-NPs initially delivered into endosomes by Au-NCs transferred over a period of hours to intracellular membranes through tumor cells, with greater intracellular spread in melanoma cells than breast carcinoma cells. Clonogenic assays revealed that Au-NCs enhanced radiotherapeutic killing of melanoma cells. Thus, multilamellar lipid capsules may serve as an effective carrier to deliver amphiphilic gold nanoparticles to tumors, where the membrane-penetrating properties of these materials can significantly enhance the efficacy of frontline radiotherapy treatments.United States. Army Research Office (Contract W911NF-13-D-0001)United States. Army Research Office (Contract W911NF-07-D-0004

    Conductivity in organic semiconductors hybridized with the vacuum field

    Full text link
    Organic semiconductors have generated considerable interest for their potential for creating inexpensive and flexible devices easily processed on a large scale [1-11]. However technological applications are currently limited by the low mobility of the charge carriers associated with the disorder in these materials [5-8]. Much effort over the past decades has therefore been focused on optimizing the organisation of the material or the devices to improve carrier mobility. Here we take a radically different path to solving this problem, namely by injecting carriers into states that are hybridized to the vacuum electromagnetic field. These are coherent states that can extend over as many as 10^5 molecules and should thereby favour conductivity in such materials. To test this idea, organic semiconductors were strongly coupled to the vacuum electromagnetic field on plasmonic structures to form polaritonic states with large Rabi splittings ca. 0.7 eV. Conductivity experiments show that indeed the current does increase by an order of magnitude at resonance in the coupled state, reflecting mostly a change in field-effect mobility as revealed when the structure is gated in a transistor configuration. A theoretical quantum model is presented that confirms the delocalization of the wave-functions of the hybridized states and the consequences on the conductivity. While this is a proof-of-principle study, in practice conductivity mediated by light-matter hybridized states is easy to implement and we therefore expect that it will be used to improve organic devices. More broadly our findings illustrate the potential of engineering the vacuum electromagnetic environment to modify and to improve properties of materials.Comment: 16 pages, 13 figure

    Solvent Mediated Assembly of Nanoparticles Confined in Mesoporous Alumina

    Full text link
    The controlled self-assembly of thiol stabilized gold nanocrystals in a mediating solvent and confined within mesoporous alumina was probed in situ with small angle x-ray scattering. The evolution of the self-assembly process was controlled reversibly via regulated changes in the amount of solvent condensed from an undersaturated vapor. Analysis indicated that the nanoparticles self-assembled into cylindrical monolayers within the porous template. Nanoparticle nearest-neighbor separation within the monolayer increased and the ordering decreased with the controlled addition of solvent. The process was reversible with the removal of solvent. Isotropic clusters of nanoparticles were also observed to form temporarily during desorption of the liquid solvent and disappeared upon complete removal of liquid. Measurements of the absorption and desorption of the solvent showed strong hysteresis upon thermal cycling. In addition, the capillary filling transition for the solvent in the nanoparticle-doped pores was shifted to larger chemical potential, relative to the liquid/vapor coexistence, by a factor of 4 as compared to the expected value for the same system without nanoparticles.Comment: 9 pages, 9 figures, appeared in Phys. Rev.

    Patchy Amphiphilic Dendrimers Bind Adenovirus and Control Its Host Interactions and in Vivo Distribution

    No full text
    The surface of proteins is heterogeneous with sophisticated but precise hydrophobic and hydrophilic patches, which is essential for their diverse biological functions. To emulate such distinct surface patterns on macromolecules, we used rigid spherical synthetic dendrimers (polyphenylene dendrimers) to provide controlled amphiphilic surface patches with molecular precision. We identified an,. I optimal spatial arrangement of these patches on certain dendrimers that enabled their interaction with human adenovirus 5 (Ads). Patchy dendrimers bound to the surface of Ads formed a synthetic polymer corona that greatly altered various host interactions of Ads as well as in vivo distribution. The dendrimer corona (1) improved the ability of Ad5-derived gene transfer vectors to transduce cells deficient for the primary Ad5 cell membrane receptor and (2) modulated the binding of Ads to blood coagulation factor X, one of the most critical virus host interactions in the bloodstream. It significantly enhanced the transduction efficiency of Ad5 while also protecting it from neutralization by natural antibodies and the complement system in human whole blood. Ads with a synthetic dendrimer corona revealed profoundly altered in vivo distribution, improved transduction of heart, and dampened vector sequestration by liver and spleen. We propose the design of bioactive polymers that bind protein surfaces solely based on their amphiphilic surface patches and protect against a naturally occurring protein corona, which is highly attractive to improve Ad5-based in vivo gene therapy applications

    Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation

    Get PDF
    Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (ρP) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations

    Effect of Particle Diameter and Surface Composition on the Spontaneous Fusion of Monolayer-Protected Gold Nanoparticles with Lipid Bilayers

    Get PDF
    Anionic, monolayer-protected gold nanoparticles (AuNPs) have been shown to nondisruptively penetrate cellular membranes. Here, we show that a critical first step in the penetration process is potentially the fusion of such AuNPs with lipid bilayers. Free energy calculations, experiments on unilamellar and multilamellar vesicles, and cell studies all support this hypothesis. Furthermore, we show that fusion is only favorable for AuNPs with core diameters below a critical size that depends on the monolayer composition.National Science Foundation (U.S.). Graduate Research Fellowship ProgramNational Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Award DMR-0819762)National Cancer Institute (U.S.) (Award U54CA143874)United States. Army Research Office (Contract W911NF-13-D-0001)United States. Army Research Office (Contract W911NF-07-D-0004, T.O. 8

    The multifaceted covid-19: Ct aspects of its atypical pulmonary and abdominal manifestations and complications in adults and children. a pictorial review

    Get PDF
    Our daily experience in a COVID hospital has allowed us to learn about this disease in many of its changing and unusual aspects. Some of these uncommon manifestations, however, appeared more frequently than others, giving shape to a multifaceted COVID-19 disease. This pictorial review has the aim to describe the radiological aspects of atypical presentations and of some complications of COVID-19 disease in adults and children and provide a simple guide for radiologists to become familiar with the multiform aspects of this disease

    Synthesis and Characterization of Janus Gold Nanoparticles

    Get PDF
    When gold nanoparticles are coated with binary mixtures of dislike ligand molecules, separation in the ligand shell occurs; if the particles are smaller than a threshold size the separation is solely enthalpy driven leading to the spontaneous formation of Janus particles
    corecore