2 research outputs found

    Determination of nitrogen dioxide, sulfur dioxide, ozone, and ammonia in ambient air using the passive sampling method associated with ion chromatographic and potentiometric analyses

    Get PDF
    Concentrations of nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and ammonia (NH3) were determined in the ambient air of Al-Ain city over a year using the passive sampling method associated with ion chromatographic and potentiometric detections. IVL samplers were used for collecting nitrogen and sulfur dioxides whereas Ogawa samplers were used for collecting ozone and ammonia. Five sites representing the industrial, traffic, commercial, residential, and background regions of the city were monitored in the course of this investigation. Year average concentrations of ≤59.26, 15.15, 17.03, and 11.88 μg/m3 were obtained for NO2, SO2, O3, and NH3, respectively. These values are lower than the maxima recommended for ambient air quality standards by the local environmental agency and the world health organization. Results obtained were correlated with the three meteorological parameters: humidity, wind speed, and temperature recorded during the same period of time using the paired t test, probability p values, and correlation coefficients. Humidity and wind speed showed insignificant effects on NO2, SO2, O3, and NH3 concentrations at 95% confidence level. Temperature showed insignificant effects on the concentrations of NO2 and NH3 while significant effects on SO2 and O3 were observed. Nonlinear correlations (R2 ≤ 0.722) were obtained for the changes in measured concentrations with changes in the three meteorological parameters. Passive samplers were shown to be not only precise (RSD ≤ 13.57) but also of low cost, low technical demand, and expediency in monitoring different locations

    Characterization of a-Si:H/c-Si Heterojunctions by Time Resolved Microwave Conductivity Technique

    No full text
    In heterojunction solar cells, a-Si:H/c-Si heterointerface is of significant importance, since the heterointerface characteristics directly affect junction properties and thus solar cell efficiency. In this study, we have performed time resolved microwave conductivity (TRMC) measurements on n-type c-Si wafers passivated on both sides with intrinsic and doped a-Si:H layers in order to investigate electrical property and passivation quality of the a-Si:H/c-Si heterojunctions. It was found that the TRMC decay time and decay curve shape varied with the laser wavelength and power intensity and also depended on sample structures. By using 1064 nm laser pulse with high excitation, differences in the decay curve shape between samples with and without p-n junction were observed. The samples containing p-n junction(s) had unique slow decay mode, after the initial fast decay, which we ascribed to the release of carriers from the low-mobility amorphous layer into the high-mobility crystalline wafer as the built-in field of the junction was restored. Experimental results suggest that the TRMC is useful nondestructive technique which is suitable for primary check of the a-Si:H/c-Si heterojunctions during the solar cell fabrication process
    corecore