101,821 research outputs found
Wave packet transmission of Bloch electron manipulated by magnetic field
We study the phenomenon of wave packet revivals of Bloch electrons and
explore how to control them by a magnetic field for quantum information
transfer. It is showed that the single electron system can be modulated into a
linear dispersion regime by the "quantized" flux and then an electronic wave
packet with the components localized in this regime can be transferred without
spreading. This feature can be utilized to perform the high-fidelity transfer
of quantum information encoded in the polarization of the spin. Beyond the
linear approximation, the re-localization and self-interference occur as the
novel phenomena of quantum coherence.Comment: 6 pages, 5 figures, new content adde
Quantum state swapping via qubit network with Hubbard interaction
We study the quantum state transfer (QST) in a class of qubit network with
on-site interaction, which is described by the generalized Hubbard model with
engineered couplings. It is proved that the system of two electrons with
opposite spins in this quantum network of sites can be rigorously reduced
into one dimensional engineered single Bloch electron models with central
potential barrier. With this observation we find that such system can perform a
perfect QST, the quantum swapping between two distant electrons with opposite
spins. Numerical results show such QST and the resonant-tunnelling for the
optimal on-site interaction strengths.Comment: 4 pages, 3 figure
Optimization Methods for Designing Sequences with Low Autocorrelation Sidelobes
Unimodular sequences with low autocorrelations are desired in many
applications, especially in the area of radar and code-division multiple access
(CDMA). In this paper, we propose a new algorithm to design unimodular
sequences with low integrated sidelobe level (ISL), which is a widely used
measure of the goodness of a sequence's correlation property. The algorithm
falls into the general framework of majorization-minimization (MM) algorithms
and thus shares the monotonic property of such algorithms. In addition, the
algorithm can be implemented via fast Fourier transform (FFT) operations and
thus is computationally efficient. Furthermore, after some modifications the
algorithm can be adapted to incorporate spectral constraints, which makes the
design more flexible. Numerical experiments show that the proposed algorithms
outperform existing algorithms in terms of both the quality of designed
sequences and the computational complexity
- …
