677 research outputs found

    A New Liquid Phase and Metal-Insulator Transition in Si MOSFETs

    Full text link
    We argue that there is a new liquid phase in the two-dimensional electron system in Si MOSFETs at low enough electron densities. The recently observed metal-insulator transition results as a crossover from the percolation transition of the liquid phase through the disorder landscape in the system below the liquid-gas critical temperature. The consequences of our theory are discussed for variety of physical properties relevant to the recent experiments.Comment: 12 pages of RevTeX with 3 postscript figure

    Comment on "Theory of metal-insulator transitions in gated semiconductors" (B. L. Altshuler and D. L. Maslov, Phys. Rev. Lett. 82, 145 (1999))

    Full text link
    In a recent Letter, Altshuler and Maslov propose a model which attributes the anomalous temperature and field dependence of the resistivity of two-dimensional electron (or hole) systems to the charging and discharging of traps in the oxide (spacer), rather than to intrinsic behavior of interacting particles associated with a conductor-insulator transition in two dimensions. We argue against this model based on existing experimental evidence.Comment: 1 page; submitted to PR

    Classical versus Quantum Effects in the B=0 Conducting Phase in Two Dimensions

    Full text link
    In the dilute two-dimensional electron system in silicon, we show that the temperature below which Shubnikov-de Haas oscillations become apparent is approximately the same as the temperature below which an exponential decrease in resistance is seen in B=0, suggesting that the anomalous behavior in zero field is observed only when the system is in a degenerate (quantum) state. The temperature dependence of the resistance is found to be qualitatively similar in B=0 and at integer Landau level filling factors.Comment: 3 pages, 3 figure

    Parallel Magnetic Field Induced Transition in Transport in the Dilute Two-Dimensional Hole System in GaAs

    Full text link
    A magnetic field applied parallel to the two-dimensional hole system in the GaAs/AlGaAs heterostructure, which is metallic in the absence of an external magnetic field, can drive the system into insulating at a finite field through a well defined transition. The value of resistivity at the transition is found to depend strongly on density

    Calculations of exchange interaction in impurity band of two-dimensional semiconductors with out of plane impurities

    Full text link
    We calculate the singlet-triplet splitting for a couple of two-dimensional electrons in the potential of two positively charged impurities which are located out of plane. We consider different relations between vertical distances of impurities h1h_1 and h2h_2 and their lateral distance RR. Such a system has never been studied in atomic physics but the methods, worked out for regular two-atomic molecules and helium atom, have been found to be useful. Analytical expressions for several different limiting configurations of impurities are obtained an interpolated formula for intermediate range of parameters is proposed. The RR-dependence of the splitting is shown to become weaker with increasing h1,h2h_1,h_2.Comment: 14 pages, RevTeX, 5 figures. Submitted to Phys Rev.

    Spin Degree of Freedom in a Two-Dimensional Electron Liquid

    Full text link
    We have investigated correlation between spin polarization and magnetotransport in a high mobility silicon inversion layer which shows the metal-insulator transition. Increase in the resistivity in a parallel magnetic field reaches saturation at the critical field for the full polarization evaluated from an analysis of low-field Shubnikov-de Haas oscillations. By rotating the sample at various total strength of the magnetic field, we found that the normal component of the magnetic field at minima in the diagonal resistivity increases linearly with the concentration of ``spin-up'' electrons.Comment: 4 pages, RevTeX, 6 eps-figures, to appear in PR

    Kinetics of the helix-coil transition

    Full text link
    Based on the Zimm-Bragg model we study cooperative helix-coil transition driven by a finite-speed change of temperature. There is an asymmetry between the coil-to-helix and helix-to-coil transition: the latter is displayed already for finite speeds, and takes shorter time than the former. This hysteresis effect has been observed experimentally, and it is explained here via quantifying system's stability in the vicinity of the critical temperature. A finite-speed cooling induces a non-equilibrium helical phase with the correlation length larger than in equilibrium. In this phase the characteristic length of the coiled domain and the non-equilibrium specific heat can display an anomalous response to temperature changes. Several pertinent experimental results on the kinetics helical biopolymers are discussed in detail.Comment: 6 pages, 8 figure

    Indication of the ferromagnetic instability in a dilute two-dimensional electron system

    Full text link
    The magnetic field B_c, in which the electrons become fully spin-polarized, is found to be proportional to the deviation of the electron density from the zero-field metal-insulator transition in a two-dimensional electron system in silicon. The tendency of B_c to vanish at a finite electron density suggests a ferromagnetic instability in this strongly correlated electron system.Comment: 4 pages, postscript figures included. Revised versio
    corecore