2,734 research outputs found
Cosmic rays, lithium abundance and excess entropy in galaxy clusters
We consider the production of Li in spallation reactions by cosmic rays
in order to explain the observed abundance in halo metal-poor stars. We show
that heating of ambient gas by cosmic rays is an inevitable consequence of this
process, and estimate the energy input required to reproduce the observed
abundance of Li/H to be of order a few hundred eV per
particle. We draw attention to the possibility that this could explain the
excess entropy in gas in galaxy groups and clusters. The evolution of Li
and the accompanying heating of gas is calculated for structures collapsing at
the present epoch with injection of cosmic rays at high redshift. We determine
the energy required to explain the abundance of Li at
corresponding to the formation epoch of halo metal-poor stars, and also an
increased entropy level of keV cm necessary to explain X-ray
observations of clusters. The energy budget for this process is consistent with
the expected energy output of radio-loud AGNs, and the diffusion length scale
of cosmic-ray protons responsible for heating is comparable to the size of
regions with excess entropy. We also discuss the constraints imposed by the
extragalactic gamma-ray background.Comment: 5 pages, 1 Figure, Accepted for publication in MNRAS (Letters
Measuring the Radiative Histories of QSOs with the Transverse Proximity Effect
Since the photons that stream from QSOs alter the ionization state of the gas
they traverse, any changes to a QSO's luminosity will produce
outward-propagating ionization gradients in the surrounding intergalactic gas.
This paper shows that at redshift z~3 the gradients will alter the gas's
Lyman-alpha absorption opacity enough to produce a detectable signature in the
spectra of faint background galaxies. By obtaining noisy (S:N~4) low-resolution
(~7A) spectra of a several dozen background galaxies in an R~20' field
surrounding an isotropically radiating 18th magnitude QSO at z=3, it should be
possible to detect any order-of-magnitude changes to the QSO's luminosity over
the previous 50--100 Myr and to measure the time t_Q since the onset of the
QSO's current luminous outburst with an accuracy of ~5 Myr for t_Q<~50 Myr.
Smaller fields-of-view are acceptable for shorter QSO lifetimes. The major
uncertainty, aside from cosmic variance, will be the shape and orientation of
the QSO's ionization cone. This can be determined from the data if the number
of background sources is increased by a factor of a few. The method will then
provide a direct test of unification models for AGN.Comment: Accepted for publication in the ApJ. 16 page
Reionization Constraints on the Contribution of Primordial Compact Objects to Dark Matter
Many lines of evidence suggest that nonbaryonic dark matter constitutes
roughly 30% of the critical closure density, but the composition of this dark
matter is unknown. One class of candidates for the dark matter is compact
objects formed in the early universe, with typical masses M between 0.1 and 1
solar masses to correspond to the mass scale of objects found with microlensing
observing projects. Specific candidates of this type include black holes formed
at the epoch of the QCD phase transition, quark stars, and boson stars. Here we
show that accretion onto these objects produces substantial ionization in the
early universe, with an optical depth to Thomson scattering out to z=1100 of
approximately tau=2-4 [f_CO\epsilon_{-1}(M/Msun)]^{1/2} (H_0/65)^{-1}, where
\epsilon_{-1} is the accretion efficiency \epsilon\equiv L/{\dot M}c^2 divided
by 0.1 and f_CO is the fraction of matter in the compact objects. The current
upper limit to the scattering optical depth, based on the anisotropy of the
microwave background, is approximately 0.4. Therefore, if accretion onto these
objects is relatively efficient, they cannot be the main component of
nonbaryonic dark matter.Comment: 12 pages including one figure, uses aaspp4, submitted to Ap
Massive and Red Objects predicted by a semianalytical model of galaxy formation
We study whether hierarchical galaxy formation in a concordance CDM
universe can produce enough massive and red galaxies compared to the
observations. We implement a semi-analytical model in which the central black
holes gain their mass during major mergers of galaxies and the energy feedback
from active galaxy nuclei (AGN) suppresses the gas cooling in their host halos.
The energy feedback from AGN acts effectively only in massive galaxies when
supermassive black holes have been formed in the central bulges. Compared with
previous models without black hole formation, our model predicts more massive
and luminous galaxies at high redshift, agreeing with the observations of K20
up to . Also the predicted stellar mass density from massive galaxies
agrees with the observations of GDDS. Because of the energy feedback from AGN,
the formation of new stars is stopped in massive galaxies with the termination
of gas cooling and these galaxies soon become red with color 5 (Vega
magnitude), comparable to the Extremely Red Objects (EROs) observed at redshift
1-2. Still the predicted number density of very EROs is lower than
observed at , and it may be related to inadequate descriptions of dust
extinction, star formation history and AGN feedback in those luminous galaxies.Comment: Accepted for Publication in ApJ, added reference
- …