295 research outputs found

    Global Commercial Surrogacy and International Adoption: Parallels and Differences

    Get PDF
    Over the decades, there have been numerous trends in the formation of family for those experiencing infertility. Adoption – initially domestic but now mostly international – has long been a prevailing method, with a dual outcome of also finding homes for parentless children. Those would-be parents with a stronger desire for genetic relatedness have turned to assisted reproductive technologies for the creation of their families. In the 21st century, capitalising on globalisation and advances in medical sciences and communication, global commercial surrogacy (GCS) is emerging as a dominant method of family formation. In seeking to publish this article in Adoption & Fostering, our primary objective was to provide its readership with an introductory look at GCS, thereby expanding an awareness of surrogacy to an audience whose work has traditionally been concerned with the care and protection of children through foster care and adoption. A secondary aim was to see where the long-standing field of adoption could potentially inform the burgeoning field of global commercial surrogacy. To achieve these objectives, we use international adoption and the adoption triangle as a framework, as we look at the similarities and differences between: (1) the adoptive and commissioning parents; (2) the birth mother and the surrogate; and (3) the adopted children and the children born of global surrogacy

    Electromagnetically induced transparency in inhomogeneously broadened Lambda-transition with multiple excited levels

    Full text link
    Electromagnetically induced transparency (EIT) has mainly been modelled for three-level systems. In particular, a considerable interest has been dedicated to the Lambda-configuration, with two ground states and one excited state. However, in the alkali-metal atoms, which are commonly used, hyperfine interaction in the excited state introduces several levels which simultaneously participate in the scattering process. When the Doppler broadening is comparable with the hyperfine splitting in the upper state, the three-level Lambda model does not reproduce the experimental results. Here we theoretically investigate the EIT in a hot vapor of alkali-metal atoms and demonstrate that it can be strongly reduced due to the presence of multiple excited levels. Given this model, we also show that a well-designed optical pumping enables to significantly recover the transparency

    Designing Next-Generation Local Drug Delivery Vehicles for Glioblastoma Adjuvant Chemotherapy: Lessons from the Clinic.

    Get PDF
    To date, the clinical outcomes and survival rates for patients with glioblastoma (GB) remain poor. A promising approach to disease-modification involves local delivery of adjuvant chemotherapy into the resection cavity, thus circumventing the restrictions imposed by the blood-brain barrier. The clinical performance of the only FDA-approved local therapy for GB [carmustine (BCNU)-loaded polyanhydride wafers], however, has been disappointing. There is an unmet medical need in the local treatment of GB for drug delivery vehicles that provide sustained local release of small molecules and combination drugs over several months. Herein, key quantitative lessons from the use of local and systemic adjuvant chemotherapy for GB in the clinic are outlined, and it is discussed how these can inform the development of next-generation therapies. Several recent approaches are highlighted, and it is proposed that long-lasting soft materials can capture the value of stiff BCNU-loaded wafers while addressing a number of unmet medical needs. Finally, it is suggested that improved communication between materials scientists, biomedical scientists, and clinicians may facilitate translation of these materials into the clinic and ultimately lead to improved clinical outcomes.The Winston Churchill Foundation of the United State

    Transparent Films Made of Highly Scattering Particles

    Get PDF
    Today, colloids are widely employed in various products from creams and coatings to electronics. The ability to control their chemical, optical, or electronic features by controlling their size and shape explains why these materials are so widely preferred. Nevertheless, altering some of these properties may also lead to some undesired side effects, one of which is an increase in optical scattering upon concentration. Here, we address this strong scattering issue in films made of binary colloidal suspensions. In particular, we focus on raspberry-type polymeric particles made of a spherical polystyrene core decorated by small hemispherical domains of acrylate with an overall positive charge, which display an unusual stability against aggregation in aqueous solutions. Their solid films display a brilliant red color due to Bragg scattering but appear completely white on account of strong scattering otherwise. To suppress the scattering and induce transparency, we prepared films by hybridizing them with oppositely charged PS particles with a size similar to that of the bumps on the raspberries. We report that the smaller PS particles prevent raspberry particle aggregation in solid films and suppress scattering by decreasing the spatial variation of the refractive index inside the film. We believe that the results presented here provide a simple strategy to suppress strong scattering of larger particles to be used in optical coatings

    The development of a toxicity database using freshwater macroinvertebrates, and its application to the protection of South African water resources

    Get PDF
    There is a growing international trend towards the protection of freshwater resources from pollution by imposing instream guidelines and specified waste-discharge conditions. Current methods for devising freshwater quality guidelines are based on species sensitivity distributions (SSDs) that are used to identify pollutant concentrations, ensuring the protection of a modelled percentage of species (95% protection is a common goal). SSDs are derived from the toxicity test results of as many taxa as possible for each polluting substance. Waste-discharge licences can be for single substances, specified in terms of chemical concentrations, and derived in conjunction with instream guidelines; or for complex mixtures, specified in terms of toxic units. In both cases toxicity test results are the core data used. The emphasis on SSDs calls into question the species constituting the test populations. It is likely that SSDs based in part on the responses of local organisms will achieve superior site-specific ecological protection. Until the early 1990s, there were very few data on the tolerances of South African freshwater organisms. In the intervening decade, the Unilever Centre for Environmental Water Quality at Rhodes University has developed a toxicity database that, to date, records the responses of 21 South African freshwater taxa to 26 single-substance pollutants or mixtures. This is the most comprehensive database of South African toxicity responses available and has been used in the drawing up of methods and guidelines to protect water resources. This paper aims to make these data available and to describe applications of the data using selected case studies
    • …
    corecore