4,909 research outputs found

    Numerical evidence for the spin-Peierls state in the frustrated quantum antiferromagnet

    Full text link
    We study the spin-121\over2 Heisenberg antiferromagnet with an antiferromagnetic J3J_3 (third nearest neighbor) interaction on a square lattice. We numerically diagonalize this ``J1J_1-J3J_3'' model on clusters up to 32-sites and search for novel ground state properties as the frustration parameter J3/J1J_3/J_1 changes. For ``larger'' J3/J1J_3/J_1 we find enhancement of incommensurate spin order, in agreement with spin-wave, large-NN expansions, and other predictions. But for intermediate J3/J1J_3/J_1, the low lying excitation energy spectrum suggests that this incommensurate order is short-range. In the same region, the first excited state has the symmetries of the columnar dimer (spin-Peierls) state. The columnar dimer order parameter suggests the presence of long-range columnar dimer order. Hence, this spin-Peierls state is the best candidate for the ground state of the J1J_1-J3J_3 model in an intermediate J3/J1J_3/J_1 region.Comment: RevTeX file with five postscript figures uuencode

    Quantum critical transport, duality, and M-theory

    Get PDF
    We consider charge transport properties of 2+1 dimensional conformal field theories at non-zero temperature. For theories with only Abelian U(1) charges, we describe the action of particle-vortex duality on the hydrodynamic-to-collisionless crossover function: this leads to powerful functional constraints for self-dual theories. For the n=8 supersymmetric, SU(N) Yang-Mills theory at the conformal fixed point, exact hydrodynamic-to-collisionless crossover functions of the SO(8) R-currents can be obtained in the large N limit by applying the AdS/CFT correspondence to M-theory. In the gravity theory, fluctuating currents are mapped to fluctuating gauge fields in the background of a black hole in 3+1 dimensional anti-de Sitter space. The electromagnetic self-duality of the 3+1 dimensional theory implies that the correlators of the R-currents obey a functional constraint similar to that found from particle-vortex duality in 2+1 dimensional Abelian theories. Thus the 2+1 dimensional, superconformal Yang Mills theory obeys a "holographic self duality" in the large N limit, and perhaps more generally.Comment: 35 pages, 4 figures; (v2) New appendix on CFT2, corrected normalization of gauge field action, added ref

    4D-XY quantum criticality in a doped Mott insulator

    Full text link
    A new phenomenology is proposed for the superfluid density of strongly underdoped cuprate superconductors based on recent data for ultra-clean single crystals of YBCO. The data feature a puzzling departure from Uemura scaling and a decline of the slope as the T_c = 0 quantum critical point is approached. We show that this behavior can be understood in terms of the renormalization of quasiparticle effective charge by quantum fluctuations of the superconducting phase as described by a (3+1)-dimensional XY model. We calculate the renormalization of the superfluid density and its slope, explain the new phenomenology, and predict its eventual demise close to the QCP.Comment: Version published in PRL. For additional info and related work visit http://www.physics.ubc.ca/~fran

    Quantum phase transitions in bilayer SU(N) anti-ferromagnets

    Full text link
    We present a detailed study of the destruction of SU(N) magnetic order in square lattice bilayer anti-ferromagnets using unbiased quantum Monte Carlo numerical simulations and field theoretic techniques. We study phase transitions from an SU(N) N\'eel state into two distinct quantum disordered "valence-bond" phases: a valence-bond liquid (VBL) with no broken symmetries and a lattice-symmetry breaking valence-bond solid (VBS) state. For finite inter-layer coupling, the cancellation of Berry phases between the layers has dramatic consequences on the two phase transitions: the N\'eel-VBS transition is first order for all Nā‰„5N\geq5 accesible in our model, whereas the N\'eel-VBL transition is continuous for N=2 and first order for N>= 4; for N=3 the N\'eel-VBL transition show no signs of first-order behavior

    Influence of the quantum zero-point motion of a vortex on the electronic spectra of s-wave superconductors

    Full text link
    We compute the influence of the quantum zero-point motion of a vortex on the electronic quasiparticle spectra of s-wave superconductors. The vortex is assumed to be pinned by a harmonic potential, and its coupling to the quasiparticles is computed in the framework of BCS theory. Near the core of the vortex, the motion leads to a shift of spectral weight away from the chemical potential, and thereby reduces the zero bias conductance peak; additional structure at the frequency of the harmonic trap is also observed.Comment: 14 pages, 7 figures; (v2) added refs; (v3) removed discussion on d-wave superconductors and moved it to cond-mat/060600

    Competing orders II: the doped quantum dimer model

    Get PDF
    We study the phases of doped spin S=1/2 quantum antiferromagnets on the square lattice, as they evolve from paramagnetic Mott insulators with valence bond solid (VBS) order at zero doping, to superconductors at moderate doping. The interplay between density wave/VBS order and superconductivity is efficiently described by the quantum dimer model, which acts as an effective theory for the total spin S=0 sector. We extend the dimer model to include fermionic S=1/2 excitations, and show that its mean-field, static gauge field saddle points have projective symmetries (PSGs) similar to those of `slave' particle U(1) and SU(2) gauge theories. We account for the non-perturbative effects of gauge fluctuations by a duality mapping of the S=0 dimer model. The dual theory of vortices has a PSG identical to that found in a previous paper (L. Balents et al., cond-mat/0408329) by a duality analysis of bosons on the square lattice. The previous theory therefore also describes fluctuations across superconducting, supersolid and Mott insulating phases of the present electronic model. Finally, with the aim of describing neutron scattering experiments, we present a phenomenological model for collective S=1 excitations and their coupling to superflow and density wave fluctuations.Comment: 22 pages, 10 figures; part I is cond-mat/0408329; (v2) changed title and added clarification

    Evolution of the single-hole spectral function across a quantum phase transition in the anisotropic-triangular-lattice antiferromagnet

    Full text link
    We study the evolution of the single-hole spectral function when the ground state of the anisotropic-triangular-lattice antiferromagnet changes from the incommensurate magnetically-ordered phase to the spin-liquid state. In order to describe both of the ground states on equal footing, we use the large-N approach where the transition between these two phases can be obtained by controlling the quantum fluctuations via an 'effective' spin magnitude. Adding a hole into these ground states is described by a t-J type model in the slave-fermion representation. Implications of our results to possible future ARPES experiments on insulating frustrated magnets, especially Cs2_2CuCl4_4, are discussed.Comment: 8 pages, 7 figure

    Locally critical point in an anisotropic Kondo lattice

    Full text link
    We report the first numerical identification of a locally quantum critical point, at which the criticality of the local Kondo physics is embedded in that associated with a magnetic ordering. We are able to numerically access the quantum critical behavior by focusing on a Kondo-lattice model with Ising anisotropy. We also establish that the critical exponent for the q-dependent dynamical spin susceptibility is fractional and compares well with the experimental value for heavy fermions.Comment: 4 pages, 3 figures; published versio

    Pair density wave instability and Cooper pair insulators in gapped fermion systems

    Full text link
    By analyzing simple models of fermions in lattice potentials we argue that the zero-temperature pairing instability of any ideal band-insulator occurs at a finite momentum. The resulting supersolid state is known as "pair density wave". The pairing momentum at the onset of instability is generally incommensurate as a result of phase-space restrictions and relative strengths of interband and intraband pairing. However, commensurate pairing occurs in the strong-coupling limit and becomes a Cooper-channel analogue of the Halperin-Rice exciton condensation instability in indirect bandgap semiconductors. The exceptional sensitivity of incommensurate pairing to quantum fluctuations can lead to a strongly-correlated insulating regime and a non-BCS transition, even in the case of weak coupling as shown by an exact renormalization group analysis.Comment: Proceedings article for SCES 2010. To appear in Journal of Physics: Conference Serie

    APOE genotype and entorhinal cortex volume in non-demented community-dwelling adults in midlife and early old age

    Get PDF
    Copyright Ā© 2012 IOS PressThis article has been made available through the Brunel Open Access Publishing Fund.The apolipoprotein E (APOE) Īµ4 allele is a risk factor for the neuropathological decline accompanying Alzheimer's disease (AD) while, conversely, the Īµ2 allele offers protection. One of the brain structures exhibiting the earliest changes associated with the disease is the entorhinal cortex. We therefore investigated the volumes of the entorhinal cortex and other structures in the medial temporal lobe including the parahippocampal gyrus, temporal pole, and inferior, middle, and superior temporal cortices, in relation to APOE genotype. Our main objectives were to determine if (a) volumes systematically varied according to allele in a stepwise fashion, Īµ2 > Īµ3 > Īµ4, and (b) associations varied according to age. We investigate this association in 627 non-demented community-dwelling adults in middle age (44 to 48 years; n = 314) and older age (64 to 68 years; n = 313) who underwent structural MRI scans. We found no evidence of APOE-related variation in brain volumes in the age groups examined. We conclude that if a Īµ2 > Īµ3 > Īµ4 pattern in brain volumes does emerge in non-demented adults living in the community in old age, it is not until after the age of 68 years.This study was funded by the UK Leverhulme Trust, the British Academy, the NHMRC Research Fellowship No. 471501, the NHMRC Research Fellowship No.#1002560, the National Health and Medical Research Council of Australia Unit Grant No. 973302, Program Grant No. 179805, Project grant No. 157125; Program grant no. 350833, and the National Computational Infrastructure. This article is made available through the Brunel Open Access Publishing Fund
    • ā€¦
    corecore