257 research outputs found

    Continuous Crystallization in Hexagonally-Ordered Materials

    Full text link
    We demonstrate that the phase transition from columnar-hexagonal liquid crystal to hexagonal-crystalline solid falls into an unusual universality class, which in three-dimensional allows for both discontinuous transitions as well as continuous transitions, characterized by a single set of exponents. We show by a renormalization group calculation (to first order in ϵ=4d\epsilon = 4-d) that the critical exponents of the continuous transition are precisely those of the XY model, which gives rise to a continuous evolution of elastic moduli. Although the fixed points of the present model are found to be identical to the XY model, the elastic compliance to deformations in the plane of hexagonal order, μ\mu, is nonetheless shown to critically influence the crystallization transition, with the continuous transition being driven to first order by fluctuations as the in plane response grows weaker, μ0\mu \to 0.Comment: 4 pages, 2 figures (revised version

    Hydration of single crystals of dipalmitoylphosphatidylcholine.

    Full text link

    Surface Induced Order in Liquid Metals and Binary Alloys

    Full text link
    Measurements of the surface x-ray scattering from several pure liquid metals (Hg, Ga, and In) and from three alloys (Ga-Bi, Bi-In, and K-Na) with different heteroatomic chemical interactions in the bulk phase are reviewed. Surface-induced layering is found for each elemental liquid metal. The surface structure of the K-Na alloy resembles that of an elemental liquid metal. Bi-In displays pair formation at the surface. Surface segregation and a wetting film are found for Ga-Bi.Comment: 10 pages, 3 fig, published in Journal of Physics: Condensed Matte

    Sliding Phases in XY-Models, Crystals, and Cationic Lipid-DNA Complexes

    Full text link
    We predict the existence of a totally new class of phases in weakly coupled, three-dimensional stacks of two-dimensional (2D) XY-models. These ``sliding phases'' behave essentially like decoupled, independent 2D XY-models with precisely zero free energy cost associated with rotating spins in one layer relative to those in neighboring layers. As a result, the two-point spin correlation function decays algebraically with in-plane separation. Our results, which contradict past studies because we include higher-gradient couplings between layers, also apply to crystals and may explain recently observed behavior in cationic lipid-DNA complexes.Comment: 4 pages of double column text in REVTEX format and 1 postscript figur

    Capillary Filling of Anodized Alumina Nanopore Arrays

    Full text link
    The filling behavior of a room temperature solvent, perfluoromethylcyclohexane, in approximately 20 nm nanoporous alumina membranes was investigated in situ with small angle x-ray scattering. Adsorption in the pores was controlled reversibly by varying the chemical potential between the sample and a liquid reservoir via a thermal offset, Δ\DeltaT. The system exhibited a pronounced hysteretic capillary filling transition as liquid was condensed into the nanopores. These results are compared with Kelvin-Cohan theory, with a modified Derjaguin approximation, as well as with predictions by Cole and Saam.Comment: 4 pages, 3 figures, pre-proof
    corecore