3,846 research outputs found
Electric Field Modulation of Galvanomagnetic Properties of Mesoscopic Graphite
Electric field effect devices based on mesoscopic graphite are fabricated for
galvanomagnetic measurements. Strong modulation of magneto-resistance and Hall
resistance as a function of gate voltage is observed as sample thickness
approaches the screening length. Electric field dependent Landau level
formation is detected from Shubnikov de Haas oscillations in
magneto-resistance. The effective mass of electron and hole carriers has been
measured from the temperature dependant behavior of these oscillations.Comment: 4 pages, 4 figures included, submitted to Phys. Rev. Let
Comments on differential cross section of phi-meson photoproduction at threshold
We show that the differential cross section d_sigma/d_t of gamma p --> \phi p
reaction at the threshold is finite and its value is crucial to the mechanism
of the phi meson photoproduction and for the models of phi-N interaction.Comment: 8 pages, 2 figure
On the Fulde-Ferrell State in Spatially Isotropic Superconductors
Effects of superconducting fluctuations on the Fulde-Ferrell (FF) state are
discussed in a spatially isotropic three-dimensional superconductor under a
magnetic field. For this system, Shimahara recently showed that within the
phenomenological Ginzburg-Landau theory, the long-range order of the FF state
is suppressed by the phase fluctuation of the superconducting order parameter.
[H. Shimahara: J. Phys. Soc. Jpn. {\bf 67} (1998) 1872, Physica B {\bf 259-261}
(1999) 492] In this letter, we investigate this instability of the FF state
against superconducting fluctuations from the microscopic viewpoint, employing
the theory developed by Nozi\'eres and Schmitt-Rink in the BCS-BEC crossover
field. Besides the absence of the second-order phase transition associated with
the FF state, we show that even if the pairing interaction is weak, the shift
of the chemical potential from the Fermi energy due to the fluctuations is
crucial near the critical magnetic field of the FF state obtained within the
mean-field theory.Comment: 11 pages, 1 figur
A no-go on strictly stationary spacetimes in four/higher dimensions
We show that strictly stationary spacetimes cannot have non-trivial
configurations of form fields/complex scalar fields and then the spacetime
should be exactly Minkowski or anti-deSitter spacetimes depending on the
presence of negative cosmological constant. That is, self-gravitating complex
scalar fields and form fields cannot exist.Comment: 8 page
Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance
We investigate strong coupling effects on the superfluid phase transition in
a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance
describes a composite quasi-Boson, which can give rise to an additional pairing
interaction between the Fermi atoms. This attractive interaction becomes
stronger as the threshold energy of the Feshbach resonance two-particle bound
state is lowered. In a recent paper, we showed that in the uniform Fermi gas,
this tunable pairing interaction naturally leads to a BCS-BEC crossover of the
Nozi`eres and Schmitt-Rink kind, in which the BCS-type superfluid phase
transition continuously changes into the BEC-type as the threshold energy is
decreased. In this paper, we extend our previous work by including the effect
of a harmonic trap potential, treated within the local density approximation
(LDA). We also give results for both weak and strong coupling to the Feshbach
resonance. We show that the BCS-BEC crossover phenomenon strongly modifies the
shape of the atomic density profile at the superfluid phase transition
temperature Tc, reflecting the change of the dominant particles going from
Fermi atoms to composite Bosons. In the BEC regime, these composite Bosons are
shown to first appear well above Tc. We also discuss the "phase diagram" above
Tc as a function of the tunable threshold energy. We introduce a characteristic
temperature T* describing the effective crossover in the normal phase from a
Fermi gas of atoms to a gas of stable molecules.Comment: 43 pages, 13 figures (submitted to PRA
Chandra observation of the central galaxies in A1060 cluster of galaxies
Chandra observation of the central region of the A1060 cluster of galaxies
resolved X-ray emission from two giant elliptical galaxies, NGC 3311 and NGC
3309. The emission from these galaxies consists of two components, namely the
hot interstellar medium (ISM) and the low-mass X-ray binaries (LMXBs). We found
the spatial extent of the ISM component was much smaller than that of stars for
both galaxies, while the ratios of X-ray to optical blue-band luminosities were
rather low but within the general scatter for elliptical galaxies. After
subtracting the LMXB component, the ISM is shown to be in pressure balance with
the intracluster medium of A1060 at the outer boundary of the ISM. These
results imply that the hot gas supplied from stellar mass loss is confined by
the external pressure of the intracluster medium, with the thermal conduction
likely to be suppressed. The cD galaxy NGC 3311 does not exhibit the extended
potential structure which is commonly seen in bright elliptical galaxies, and
we discuss the possible evolution history of the very isothermal cluster A1060.Comment: 12 pages, 7 figures, Latex2e(emulateapj5), accepted in Ap
Supercurrent induced by tunneling Bogoliubov excitations in a Bose-Einstein condensate
We study the tunneling of Bogoliubov excitations through a barrier in a
Bose-Einstein condensate. We extend our previous work [Phys. Rev. A
\textbf{78}, 013628 (2008)] to the case when condensate densities are different
between the left and right of the barrier potential. In the framework of the
Bogoliubov mean-field theory, we calculate the transmission probability and
phase shift, as well as the energy flux and quasiparticle current carried by
Bogoliubov excitations. We find that Bogoliubov phonons twist the condensate
phase due to a back-reaction effect, which induces the Josephson supercurrent.
While the total current given by the sum of quasiparticle current and induced
supercurrent is conserved, the quasiparticle current flowing through the
barrier potential is shown to be remarkably enhanced in the low energy region.
When the condensate densities are different between the left and right of the
barrier, the excess quasiparticle current, as well as the induced supercurrent,
remains finite far away from the barrier. We also consider the tunneling of
excitations and atoms through the boundary between the normal and superfluid
regions. We show that supercurrent can be generated inside the condensate by
injecting free atoms from outside. On the other hand, atoms are emitted when
the
Bogoliubov phonons propagate toward the phase boundary from the superfluid
region.Comment: 36 pages, 12 figures, revised version as accepted by Phys. Rev.
Equation of state of a superfluid Fermi gas in the BCS-BEC crossover
We present a theory for a superfluid Fermi gas near the BCS-BEC crossover,
including pairing fluctuation contributions to the free energy similar to that
considered by Nozieres and Schmitt-Rink for the normal phase. In the strong
coupling limit, our theory is able to recover the Bogoliubov theory of a weakly
interacting Bose gas with a molecular scattering length very close to the known
exact result. We compare our results with recent Quantum Monte Carlo
simulations both for the ground state and at finite temperature. Excellent
agreement is found for all interaction strengths where simulation results are
available.Comment: 7 pages, 4 figures, published version in Europhysics Letters, a long
preprint with details will appear soo
Submillimeter Array multiline observations of the massive star-forming region IRAS 18089-1732
Submillimeter Array (SMA) observations of the high-mass star-forming region
IRAS 18089-1732 in the 1 mm and 850 m band with 1 GHz bandwidth reveal a
wealth of information. We present the observations of 34 lines from 16
different molecular species. Most molecular line maps show significant
contributions from the outflow, and only few molecules are confined to the
inner core. We present and discuss the molecular line observations and outline
the unique capabilities of the SMA for future imaging line surveys at high
spatial resolution.Comment: Accepted for ApJ Letters, SMA special volum
- …