3,846 research outputs found

    Electric Field Modulation of Galvanomagnetic Properties of Mesoscopic Graphite

    Full text link
    Electric field effect devices based on mesoscopic graphite are fabricated for galvanomagnetic measurements. Strong modulation of magneto-resistance and Hall resistance as a function of gate voltage is observed as sample thickness approaches the screening length. Electric field dependent Landau level formation is detected from Shubnikov de Haas oscillations in magneto-resistance. The effective mass of electron and hole carriers has been measured from the temperature dependant behavior of these oscillations.Comment: 4 pages, 4 figures included, submitted to Phys. Rev. Let

    Comments on differential cross section of phi-meson photoproduction at threshold

    Get PDF
    We show that the differential cross section d_sigma/d_t of gamma p --> \phi p reaction at the threshold is finite and its value is crucial to the mechanism of the phi meson photoproduction and for the models of phi-N interaction.Comment: 8 pages, 2 figure

    On the Fulde-Ferrell State in Spatially Isotropic Superconductors

    Full text link
    Effects of superconducting fluctuations on the Fulde-Ferrell (FF) state are discussed in a spatially isotropic three-dimensional superconductor under a magnetic field. For this system, Shimahara recently showed that within the phenomenological Ginzburg-Landau theory, the long-range order of the FF state is suppressed by the phase fluctuation of the superconducting order parameter. [H. Shimahara: J. Phys. Soc. Jpn. {\bf 67} (1998) 1872, Physica B {\bf 259-261} (1999) 492] In this letter, we investigate this instability of the FF state against superconducting fluctuations from the microscopic viewpoint, employing the theory developed by Nozi\'eres and Schmitt-Rink in the BCS-BEC crossover field. Besides the absence of the second-order phase transition associated with the FF state, we show that even if the pairing interaction is weak, the shift of the chemical potential from the Fermi energy due to the fluctuations is crucial near the critical magnetic field of the FF state obtained within the mean-field theory.Comment: 11 pages, 1 figur

    A no-go on strictly stationary spacetimes in four/higher dimensions

    Full text link
    We show that strictly stationary spacetimes cannot have non-trivial configurations of form fields/complex scalar fields and then the spacetime should be exactly Minkowski or anti-deSitter spacetimes depending on the presence of negative cosmological constant. That is, self-gravitating complex scalar fields and form fields cannot exist.Comment: 8 page

    Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance

    Full text link
    We investigate strong coupling effects on the superfluid phase transition in a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance describes a composite quasi-Boson, which can give rise to an additional pairing interaction between the Fermi atoms. This attractive interaction becomes stronger as the threshold energy of the Feshbach resonance two-particle bound state is lowered. In a recent paper, we showed that in the uniform Fermi gas, this tunable pairing interaction naturally leads to a BCS-BEC crossover of the Nozi`eres and Schmitt-Rink kind, in which the BCS-type superfluid phase transition continuously changes into the BEC-type as the threshold energy is decreased. In this paper, we extend our previous work by including the effect of a harmonic trap potential, treated within the local density approximation (LDA). We also give results for both weak and strong coupling to the Feshbach resonance. We show that the BCS-BEC crossover phenomenon strongly modifies the shape of the atomic density profile at the superfluid phase transition temperature Tc, reflecting the change of the dominant particles going from Fermi atoms to composite Bosons. In the BEC regime, these composite Bosons are shown to first appear well above Tc. We also discuss the "phase diagram" above Tc as a function of the tunable threshold energy. We introduce a characteristic temperature T* describing the effective crossover in the normal phase from a Fermi gas of atoms to a gas of stable molecules.Comment: 43 pages, 13 figures (submitted to PRA

    Chandra observation of the central galaxies in A1060 cluster of galaxies

    Get PDF
    Chandra observation of the central region of the A1060 cluster of galaxies resolved X-ray emission from two giant elliptical galaxies, NGC 3311 and NGC 3309. The emission from these galaxies consists of two components, namely the hot interstellar medium (ISM) and the low-mass X-ray binaries (LMXBs). We found the spatial extent of the ISM component was much smaller than that of stars for both galaxies, while the ratios of X-ray to optical blue-band luminosities were rather low but within the general scatter for elliptical galaxies. After subtracting the LMXB component, the ISM is shown to be in pressure balance with the intracluster medium of A1060 at the outer boundary of the ISM. These results imply that the hot gas supplied from stellar mass loss is confined by the external pressure of the intracluster medium, with the thermal conduction likely to be suppressed. The cD galaxy NGC 3311 does not exhibit the extended potential structure which is commonly seen in bright elliptical galaxies, and we discuss the possible evolution history of the very isothermal cluster A1060.Comment: 12 pages, 7 figures, Latex2e(emulateapj5), accepted in Ap

    Supercurrent induced by tunneling Bogoliubov excitations in a Bose-Einstein condensate

    Full text link
    We study the tunneling of Bogoliubov excitations through a barrier in a Bose-Einstein condensate. We extend our previous work [Phys. Rev. A \textbf{78}, 013628 (2008)] to the case when condensate densities are different between the left and right of the barrier potential. In the framework of the Bogoliubov mean-field theory, we calculate the transmission probability and phase shift, as well as the energy flux and quasiparticle current carried by Bogoliubov excitations. We find that Bogoliubov phonons twist the condensate phase due to a back-reaction effect, which induces the Josephson supercurrent. While the total current given by the sum of quasiparticle current and induced supercurrent is conserved, the quasiparticle current flowing through the barrier potential is shown to be remarkably enhanced in the low energy region. When the condensate densities are different between the left and right of the barrier, the excess quasiparticle current, as well as the induced supercurrent, remains finite far away from the barrier. We also consider the tunneling of excitations and atoms through the boundary between the normal and superfluid regions. We show that supercurrent can be generated inside the condensate by injecting free atoms from outside. On the other hand, atoms are emitted when the Bogoliubov phonons propagate toward the phase boundary from the superfluid region.Comment: 36 pages, 12 figures, revised version as accepted by Phys. Rev.

    Equation of state of a superfluid Fermi gas in the BCS-BEC crossover

    Full text link
    We present a theory for a superfluid Fermi gas near the BCS-BEC crossover, including pairing fluctuation contributions to the free energy similar to that considered by Nozieres and Schmitt-Rink for the normal phase. In the strong coupling limit, our theory is able to recover the Bogoliubov theory of a weakly interacting Bose gas with a molecular scattering length very close to the known exact result. We compare our results with recent Quantum Monte Carlo simulations both for the ground state and at finite temperature. Excellent agreement is found for all interaction strengths where simulation results are available.Comment: 7 pages, 4 figures, published version in Europhysics Letters, a long preprint with details will appear soo

    Submillimeter Array multiline observations of the massive star-forming region IRAS 18089-1732

    Full text link
    Submillimeter Array (SMA) observations of the high-mass star-forming region IRAS 18089-1732 in the 1 mm and 850 μ\mum band with 1 GHz bandwidth reveal a wealth of information. We present the observations of 34 lines from 16 different molecular species. Most molecular line maps show significant contributions from the outflow, and only few molecules are confined to the inner core. We present and discuss the molecular line observations and outline the unique capabilities of the SMA for future imaging line surveys at high spatial resolution.Comment: Accepted for ApJ Letters, SMA special volum
    corecore