21,043 research outputs found

    Examining the mortality effects of the Irish National Smoking Ban.

    Get PDF
    Secondhand smoke causes disease and death in those exposed, with cardiovascular and respiratory problems as the most likely outcomes. The purpose of this study was to examine the mortality effects of the Irish national smoking ban of 2004

    Overcomplete steerable pyramid filters and rotation invariance

    Get PDF
    A given (overcomplete) discrete oriented pyramid may be converted into a steerable pyramid by interpolation. We present a technique for deriving the optimal interpolation functions (otherwise called 'steering coefficients'). The proposed scheme is demonstrated on a computationally efficient oriented pyramid, which is a variation on the Burt and Adelson (1983) pyramid. We apply the generated steerable pyramid to orientation-invariant texture analysis in order to demonstrate its excellent rotational isotropy. High classification rates and precise rotation identification are demonstrated

    Construction of localized wave functions for a disordered optical lattice and analysis of the resulting Hubbard model parameters

    Full text link
    We propose a method to construct localized single particle wave functions using imaginary time projection and thereby determine lattice Hamiltonian parameters. We apply the method to a specific disordered potential generated by an optical lattice experiment and calculate for each instance of disorder, the equivalent lattice model parameters. The probability distributions of the Hubbard parameters are then determined. Tests of localization and eigen-energy convergence are examined.Comment: 10 pages, 16 figure

    Formation of Giant Planets by Concurrent Accretion of Solids and Gas inside an Anti-Cyclonic Vortex

    Full text link
    We study the formation of a giant gas planet by the core--accretion gas--capture process, with numerical simulations, under the assumption that the planetary core forms in the center of an anti-cyclonic vortex. The presence of the vortex concentrates particles of centimeter to meter size from the surrounding disk, and speeds up the core formation process. Assuming that a planet of Jupiter mass is forming at 5 AU from the star, the vortex enhancement results in considerably shorter formation times than are found in standard core--accretion gas--capture simulations. Also, formation of a gas giant is possible in a disk with mass comparable to that of the minimum mass solar nebula.Comment: 27 pages, 4 figures, ApJ in pres

    Quantum key distribution with higher-order alphabets using spatially-encoded qudits

    Full text link
    We propose and demonstrate a quantum key distribution scheme in higher-order dd-dimensional alphabets using spatial degrees of freedom of photons. Our implementation allows for the transmission of 4.56 bits per sifted photon, while providing improved security: an intercept-resend attack on all photons would induce an error rate of 0.47. Using our system, it should be possible to send more than a byte of information per sifted photon.Comment: 4 pages, 5 figures. Replaced with published versio

    On the Relationship between Resolution Enhancement and Multiphoton Absorption Rate in Quantum Lithography

    Get PDF
    The proposal of quantum lithography [Boto et al., Phys. Rev. Lett. 85, 2733 (2000)] is studied via a rigorous formalism. It is shown that, contrary to Boto et al.'s heuristic claim, the multiphoton absorption rate of a ``NOON'' quantum state is actually lower than that of a classical state with otherwise identical parameters. The proof-of-concept experiment of quantum lithography [D'Angelo et al., Phys. Rev. Lett. 87, 013602 (2001)] is also analyzed in terms of the proposed formalism, and the experiment is shown to have a reduced multiphoton absorption rate in order to emulate quantum lithography accurately. Finally, quantum lithography by the use of a jointly Gaussian quantum state of light is investigated, in order to illustrate the trade-off between resolution enhancement and multiphoton absorption rate.Comment: 14 pages, 7 figures, submitted, v2: rewritten in response to referees' comments, v3: rewritten and extended, v4: accepted by Physical Review

    Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration

    Get PDF
    We present simulations of the non-linear evolution of streaming instabilities in protoplanetary disks. The two components of the disk, gas treated with grid hydrodynamics and solids treated as superparticles, are mutually coupled by drag forces. We find that the initially laminar equilibrium flow spontaneously develops into turbulence in our unstratified local model. Marginally coupled solids (that couple to the gas on a Keplerian time-scale) trigger an upward cascade to large particle clumps with peak overdensities above 100. The clumps evolve dynamically by losing material downstream to the radial drift flow while receiving recycled material from upstream. Smaller, more tightly coupled solids produce weaker turbulence with more transient overdensities on smaller length scales. The net inward radial drift is decreased for marginally coupled particles, whereas the tightly coupled particles migrate faster in the saturated turbulent state. The turbulent diffusion of solid particles, measured by their random walk, depends strongly on their stopping time and on the solids-to-gas ratio of the background state, but diffusion is generally modest, particularly for tightly coupled solids. Angular momentum transport is too weak and of the wrong sign to influence stellar accretion. Self-gravity and collisions will be needed to determine the relevance of particle overdensities for planetesimal formation.Comment: Accepted for publication in ApJ (17 pages). Movies of the simulations can be downloaded at http://www.mpia.de/~johansen/research_en.ph
    • …
    corecore