257 research outputs found
Altered visual processing in a rodent model of Attention-Deficit Hyperactivity Disorder
A central component of Attention-Deficit Hyperactivity Disorder (ADHD) is increased distractibility, which is linked to the superior colliculus (SC) in a range of species, including humans. Furthermore, there is now mounting evidence of altered collicular functioning in ADHD and it is proposed that a hyper-responsive SC could mediate the main symptoms of ADHD, including distractibility. In the present study we have provided a systematic characterization of the SC in the most commonly used and well-validated animal model of ADHD, the spontaneously hypertensive rat (SHR). We examined collicular-dependent orienting behavior, local field potential (LFP) and multiunit responses to visual stimuli in the anesthetized rat and morphological measures in the SHR in comparison to the Wistar Kyoto (WKY) and Wistar (WIS). We found that SHRs remain responsive to a repeated visual stimulus for more presentations than control strains and have a longer response duration. In addition, LFP and multiunit activity within the visually responsive superficial layers of the SC showed the SHR to have a hyper-responsive SC relative to control strains, which could not be explained by altered functioning of the retinocollicular pathway. Finally, examination of collicular volume, neuron and glia densities and glia:neuron ratio revealed that the SHR had a reduced ratio relative to the WKY which could explain the increased responsiveness. In conclusion, this study demonstrates strain-specific changes in the functioning and structure of the SC in the SHR, providing convergent evidence that the SC might be dysfunctional in ADHD
Upgrade of the HadGEM3-A based attribution system to high resolution and a new validation framework for probabilistic event attribution
We present a substantial upgrade of the Met Office system for the probabilistic attribution of extreme weather and climate events with higher horizontal and vertical resolution (60 km mid-latitudes and 85 vertical levels), the latest Hadley Centre atmospheric and land model (ENDGame dynamics with GA6.0 science and JULES at GL6.0) as well as an updated forcings set. A new set of experiments designed for the evaluation and implementation of an operational attribution service are described which consist of pairs of multi-decadal stochastic physics ensembles continued on a season by season basis by large ensembles that are able to sample extreme at- mospheric states possible in the recent past. Diagnostics from these experiments form the HadGEM3-A contribution to the international Climate of the 20th Century Plus (C20Cþ) project and were analysed under the European Climate and Weather Events: Interpretation and Attribution (EUCLEIA) event attribution project as well as contributing to the Climate Science for Service Partnership (CSSP)-China programme. After discussing the framing issues surrounding questions that can be asked with our system we construct a novel approach to the evaluation of atmosphere-only ensembles intended for event attribution, in the process highlighting and clarifying the distinction between hindcast skill and model performance. A framework based around assessing model representation of predictable components and ensuring exchangeability of model and real world statistics leads to a form of detection and attribution to boundary condition forcing as a means of quantifying one degree of freedom of potential model error and allowing for the bias correction of event probabilities and resulting probability ratios. This method is then applied systematically across the globe to assess contributions from anthropogenic influence and specific boundary conditions to the changing probability of observed and record seasonal mean temperatures of four recent 3-month seasons from March 2016–February 2017
Adoption of technology enabled care to support the management of children and teenagers in rheumatology services: a protocol for a mixed-methods systematic review
Introduction COVID-19 catalysed a rapid move to provide care away from the hospital using online communication platforms. Technology enabled care (TEC) continues to be an important driver in progressing future healthcare services. Due to the complex and chronic nature of conditions seen within paediatric rheumatology, TEC may lead to better outcomes. Despite some growth in published literature into the adoption of TEC in paediatric rheumatology, there is limited synthesis. The aim of this review is to provide a comprehensive understanding and evaluation of the adoption of TEC by patients in paediatric rheumatology services, to establish best practices.
Methods and analysis This proposed mixed-methods systematic review will be conducted by searching a wide variety of healthcare databases, grey literature resources and associated charities and societies, for articles reported in English language. Data extraction will include population demographics, technology intervention, factors affecting adoption of intervention and consequent study outcomes. A parallel-results convergent synthesis design is planned, with independent syntheses of quantitative and qualitative data, followed by comparison of the findings of each synthesis using a narrative approach. Normalisation process theory will be used to identify, characterise and explain implementation factors. The quality of included articles will be assessed using the Mixed Methods Appraisal Tool for research papers and the Authority, Accuracy, Coverage, Objectivity, Date, Significance checklist for grey literature. Overall confidence in quality and strength of evidence will be assessed using the Confidence in the Evidence from Reviews of Qualitative Research tool.
Ethics and dissemination Ethical approval is not required due to the nature of this mixed-methods systematic review. The findings will be disseminated via a peer-reviewed journal, relevant conferences and any other methods (eg, via NHS Trust or NIHR YouTube channels) as advised by paediatric rheumatology patients
Increasing precipitation variability on daily-to-multiyear timescales in a warmer world
This is the final version. Available on open access from the American Association for the Advancement of Science via the DOI in this recordData and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper, supplementary materials, and/or linked repositories. The GPCP precipitation data is acquired from https://climatedataguide.ucar.edu/climate-data/gpcp-daily-global precipitation-climatology-project. The IMERG precipitation data is acquired from https://gpm.nasa.gov/data/directory. For the HadGEM3-GC3.05 PPE simulations, two-dimensional fields can be accessed from https://catalogue.ceda.ac.uk/uuid/f1a2fc3c120f400396a92f5de84d596a, and post-processed three dimensional fields can be accessed from https://doi.org/10.7910/DVN/GHWGG0.The hydrological cycle intensifies under global warming with precipitation increases. How the increased precipitation varies temporally at a given location has vital implications for regional climates and ecosystem services. Based on ensemble climate model projections under a high emission scenario, here we show that approximately two-thirds of land on Earth will face a “wetter and more variable” hydroclimate on daily to multiyear timescales. This means wider swings between wet and dry extremes. Such an amplification of precipitation variability is particularly prominent over climatologically wet regions, with percentage increases in variability more than twice those in mean precipitation. Thermodynamic effects, linked to increased moisture availability, increase precipitation variability uniformly everywhere. It is the dynamic effects (negative) linked to weakened circulation variability that make precipitation variability changes strongly region dependent. The increase in precipitation variability poses a new challenge to the climate resilience of infrastructures and human society.National Natural Science Foundation of ChinaChina Postdoctoral Science FoundationInternational Partnership Program of Chinese Academy of SciencesUK–China Research Innovation Partnership Fun
Specificity of T cells in synovial fluid: high frequencies of CD8(+) T cells that are specific for certain viral epitopes
INTRODUCTION: Epstein-Barr virus (EBV) is transmitted orally, replicates in the oropharynx and establishes life-long latency in human B lymphocytes. T-cell responses to latent and lytic/replicative cycle proteins are readily detectable in peripheral blood from healthy EBV-seropositive individuals. EBV has also been detected within synovial tissue, and T-cell responses to EBV lytic proteins have been reported in synovial fluid from a patient with rheumatoid arthritis (RA). This raises the question regarding whether T cells specific for certain viruses might be present at high frequencies within synovial fluid and whether such T cells might be activated or able to secrete cytokines. If so, they might play a 'bystander' role in the pathogenesis of inflammatory joint disease. OBJECTIVES: To quantify and characterize T cells that are specific for epitopes from EBV, cytomegalovirus (CMV) and influenza in peripheral blood and synovial fluid from patients with arthritis. METHODS: Peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) were obtained from patients with inflammatory arthritis (including those with RA, osteoarthritis, psoriatic arthritis and reactive arthritis). Samples from human leucocyte antigen (HLA)-A2-positive donors were stained with fluorescent-labelled tetramers of HLA-A2 complexed with the GLCTLVAML peptide epitope from the EBV lytic cycle protein BMLF1, the GILGFVFTL peptide epitope from the influenza A matrix protein, or the NLVPMVATV epitope from the CMV pp65 protein. Samples from HLA-B8-positive donors were stained with fluorescent-labelled tetramers of HLA-B8 complexed with the RAKFKQLL peptide epitope from the EBV lytic protein BZLF1 or the FLRGRAYGL peptide epitope from the EBV latent protein EBNA3A. All samples were costained with an antibody specific for CD8. CD4(+) T cells were not analyzed. Selected samples were costained with antibodies specific for cell-surface glycoproteins, in order to determine the phenotype of the T cells within the joint and the periphery. Functional assays to detect release of IFN-γ or tumour necrosis factor (TNF)-α were also performed on some samples. RESULTS: The first group of 15 patients included 10 patients with RA, one patient with reactive arthritis, one patient with psoriatic arthritis and three patients with osteoarthritis. Of these, 11 were HLA-A2 positive and five were HLA-B8 positive. We used HLA-peptide tetrameric complexes to analyze the frequency of EBV-specific T cells in PBMCs and SFMCs (Figs 1 and 2). Clear enrichment of CD8(+) T cells specific for epitopes from the EBV lytic cycle proteins was seen within synovial fluid from almost all donors studied, including patients with psoriatic arthritis and osteoarthritis and those with RA. In donor RhA6, 9.5% of CD8(+ ) SFMCs were specific for the HLA-A2 restricted GLCTLVAML epitope, compared with 0.5% of CD8(+) PBMCs. Likewise in a donor with osteoarthritis (NR4), 15.5% of CD8(+) SFMCs were specific for the HLA-B8-restricted RAKFKQLL epitope, compared with 0.4% of CD8(+) PBMCs. In contrast, we did not find enrichment of T cells specific for the HLA-B8-restricted FLRGRAYGL epitope (from the latent protein EBNA3A) within SFMCs compared with PBMCs in any donors. In selected individuals we performed ELISpot assays to detect IFN-γ secreted by SFMCs and PBMCs after a short incubation in vitro with peptide epitopes from EBV lytic proteins. These assays confirmed enrichment of T cells specific for epitopes from EBV lytic proteins within synovial fluid and showed that subpopulations of these cells were able to secrete proinflammatory cytokines after short-term stimulation. We used a HLA-A2/GILGFVFTL tetramer to stain PBMCs and SFMCs from six HLA-A2-positive patients. The proportion of T cells specific for this influenza epitope was low (<0.2%) in all donors studied, and we did not find any enrichment within SFMCs. We had access to SFMCs only from a second group of four HLA-A2-positive patients with RA. A tetramer of HLA-A2 complexed to the NLVPMVATV epitope from the CMV pp65 protein reacted with subpopulations of CD8(+) SFMCs in all four donors, with frequencies of 0.2, 0.5, 2.3 and 13.9%. SFMCs from all four donors secreted TNF after short-term incubation with COS cells transfected with HLA-A2 and pp65 complementary DNA. We analyzed the phenotype of virus-specific cells within PBMCs and SFMCs in three donors. The SFMC virus-specific T cells were more highly activated than those in PBMCs, as evidenced by expression of high levels of CD69 and HLA-DR. A greater proportion of SFMCs were CD38(+), CD62L low, CD45RO bright, CD45RA dim, CD57(+) and CD28(-) when compared with PBMCs. DISCUSSION: This work shows that T cells specific for certain epitopes from viral proteins are present at very high frequencies (up to 15.5% of CD8(+) T cells) within SFMCs taken from patients with inflammatory joint disease. This enrichment does not reflect a generalized enrichment for the 'memory pool' of T cells; we did not find enrichment of T cells specific for the GILGFVFTL epitope from influenza A or for the FLRGRAYGL epitope from the EBV latent protein EBNA3A, whereas we found clear enrichment of T cells specific for the GLCTLVAML epitope from the EBV lytic protein BMLF1 and for the RAKFKQLL epitope from the EBV lytic protein BZLF1. The enrichment might reflect preferential recruitment of subpopulations of virus-specific T cells, perhaps based on expression of selectins, chemokine receptors or integrins. Alternatively, T cells specific for certain viral epitopes may be stimulated to proliferate within the joint, by viral antigens themselves or by cross-reactive self-antigens. Finally, it is theoretically possible that subpopulations of T cells within the joint are preferentially protected from apoptotic cell death. Whatever the explanation, the virus-specific T cells are present at high frequency, are activated and are able to secrete proinflammatory cytokines. They could potentially interact with synoviocytes and contribute to the maintenance of inflammation within joints in many different forms of inflammatory arthritis
PHL 1445: An eclipsing cataclysmic variable with a substellar donor near the period minimum
PublishedThis is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available online via the DOI in this record.We present high-speed, three-colour photometry of the eclipsing dwarf nova PHL 1445, which, with an orbital period of 76.3 min, lies just below the period minimum of ~82 min for cataclysmic variable stars (CVs). Averaging four eclipses reveals resolved eclipses of the white dwarf and bright spot. We determined the system parameters by fitting a parametrized eclipse model to the averaged light curve. We obtain a mass ratio of q = 0.087 ± 0.006 and inclination i = 85°.2 ± 0°.9. The primary and donor masses were found to be Mw = 0.73 ± 0.03 M⊙ and Md = 0.064 ± 0.005 M⊙, respectively. Through multicolour photometry a temperature of the white dwarf of Tw = 13 200 ± 700 K and a distance of 220 ± 50 pc were determined. The evolutionary state of PHL 1445 is uncertain. We are able to rule out a significantly evolved donor, but not one that is slightly evolved. Formation with a brown dwarf donor is plausible, though the brown dwarf would need to be no older than 600 Myr at the start of mass transfer, requiring an extremely low mass ratio (q = 0.025) progenitor system. PHL 1445 joins SDSS 1433 as a sub-period minimum CV with a substellar donor. The existence of two such systems raises an alternative possibility that current estimates for the intrinsic scatter and/or position of the period minimum may be in error.UK Science and Technology Facilities Council (STFC)FONDECY
Nile red fluorescence screening facilitating neutral lipid phenotype determination in budding yeast, Saccharomyces cerevisiae, and the fission yeast Schizosaccharomyces pombe.
Investigation of yeast neutral lipid accumulation is important for biotechnology and also for modelling aberrant lipid metabolism in human disease. The Nile red (NR) method has been extensively utilised to determine lipid phenotypes of yeast cells via microscopic means. NR assays have been used to differentiate lipid accumulation and relative amounts of lipid in oleaginous species but have not been thoroughly validated for phenotype determination arising from genetic modification. A modified NR assay, first described by Sitepu et al. (J Microbiol Methods 91:321-328, 2012), was able to detect neutral lipid changes in Saccharomyces cerevisiae deletion mutants with sensitivity similar to more advanced methodology. We have also be able to, for the first time, successfully apply the NR assay to the well characterised fission yeast Schizosaccharomyces pombe, an increasingly important organism in biotechnology. The described NR fluorescence assay is suitable for increased throughput and rapid screening of genetically modified strains in both the biotechnology industry and for modelling ectopic lipid production for a variety of human diseases. This ultimately negates the need for labour intensive and time consuming lipid analyses of samples that may not yield a desirable lipid phenotype, whilst genetic modifications impacting significantly on the cellular lipid phenotype can be further promoted for more in depth analyses
Repair of Acute Respiratory Distress Syndrome in COVID-19 by Stromal Cells (REALIST-COVID Trial) A Multicenter, Randomized, Controlled Clinical Trial
Copyright \ua9 2023 by the American Thoracic Society. Rationale: Mesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in coronavirus disease (COVID-19)–related acute respiratory distress syndrome (ARDS). Objectives: We investigated the safety and efficacy of ORBCEL-C (CD362 [cluster of differentiation 362]–enriched, umbilical cord–derived MSCs) in COVID-19–related ARDS. Methods: In this multicenter, randomized, double-blind, allocation-concealed, placebo-controlled trial (NCT 03042143), patients with moderate to severe COVID-19–related ARDS were randomized to receive ORBCEL-C (400 million cells) or placebo (Plasma-Lyte 148). The primary safety and efficacy outcomes were the incidence of serious adverse events and oxygenation index at Day 7, respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2:FIO2 ratio, and Sequential Organ Failure Assessment score. Clinical outcomes relating to duration of ventilation, lengths of ICU and hospital stays, and mortality were collected. Long-term follow-up included diagnosis of interstitial lung disease at 1 year and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at Days 0, 4, and 7. Measurements and Main Results: Sixty participants were recruited (final analysis: n = 30 received ORBCEL-C, n = 29 received placebo; 1 participant in the placebo group withdrew consent). Six serious adverse events occurred in the ORBCEL-C group and three in the placebo group (risk ratio, 2.9 [95% confidence interval, 0.6–13.2]; P = 0.25). Day 7 mean (SD) oxygenation index did not differ (ORBCEL-C, 98.3 [57.2] cm H2O/kPa; placebo, 96.6 [67.3] cm H2O/kPa). There were no differences in secondary surrogate outcomes or in mortality at Day 28, Day 90, 1 year, or 2 years. There was no difference in the prevalence of interstitial lung disease at 1 year or significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome. Conclusion: ORBCEL-C MSCs were safe in subjects with moderate to severe COVID-19–related ARDS but did not improve surrogates of pulmonary organ dysfunction
Randomised controlled trial of GM-CSF in critically ill patients with impaired neutrophil phagocytosis
Background. Critically ill patients with impaired neutrophil phagocytosis have significantly increased risk of nosocomial infection. Granulocyte-macrophage colony-stimulating factor (GM-CSF) improves phagocytosis by neutrophils ex vivo. This study tested the hypothesis that GM-CSF improves neutrophil phagocytosis in critically ill patients in whom phagocytosis is known to be impaired
Methods. This was a multi-centre, phase 2a randomised, placebo-controlled clinical trial Using a personalised medicine approach, only critically ill patients with impaired neutrophil phagocytosis were included. Patients were randomised 1:1 to subcutaneous GM-CSF (3 microgrammws/kg/day) or placebo, once daily for 4 days. The primary outcome measure was neutrophil phagocytosis 2 days after initiation of GM-CSF. Secondary outcomes included neutrophil phagocytosis over time, neutrophil functions other than phagocytosis, monocyte HLA-DR expression, and safety.
Results. Thirty-eight patients were recruited from 5 intensive care units (17 randomised to GM-CSF). Mean neutrophil phagocytosis at day 2 was 57.2% (SD 13.2%) in the GM-CSF group and 49.8% (13.4%) in the placebo group, p=0.73. The proportion of patients with neutrophil phagocytosis >50% at day 2, and monocyte HLA-DR, appeared significantly higher in the GM-CSF group. Neutrophil functions other than phagocytosis did not appear significantly different between the groups. The most common adverse event associated with GM-CSF was pyrexia.
Conclusions. GM-CSF did not improve mean neutrophil phagocytosis at day 2, but was safe and appeared to increase the proportion of patients with adequate phagocytosis. The study suggests proof of principle for a pharmacological effect on neutrophil function in a subset of critically ill patients.This work was funded by a grant from the Medical Research Council (G1100233), with additional support from the National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre. It was sponsored by Newcastle Universit
- …