75,188 research outputs found
Nature of Decoupling in the Mixed Phase of Extremely Type-II Layered Superconductors
The uniformly frustrated layered XY model is analyzed in its Villain form. A
decouple pancake vortex liquid phase is identified. It is bounded by both
first-order and second-order decoupling lines in the magnetic field versus
temperature plane. These transitions, respectively, can account for the
flux-lattice melting and for the flux-lattice depinning observed in the mixed
phase of clean high-temperature superconductors.Comment: 11 pages of PLAIN TeX, 1 postscript figure, published version, many
change
Degradation of Phase Coherence by Defects in a Two-Dimensional Vortex Lattice
The thermodynamic nature of two-dimensional vortex matter is studied
theoretically through a duality analysis of the XY model over the square
lattice with low uniform frustration. A phase-coherent vortex lattice state is
found at low temperature if rigid translations are prohibited. It shows a
non-zero phase rigidity that is degraded exclusively by the creation of
dislocation pairs. The unbinding of such pairs causes the vortex lattice to
simultaneously lose phase coherence and to melt at a continuous
(Kosterlitz-Thouless) phase transition. General phase auto-correlation
functions are also computed, and these results are used to argue for the
existence of a continuous melting transition of vortex matter in layered
superconductors.Comment: 11 pgs. of PLAIN TeX, to appear in PRL, some improvement
Design of multiple-ply laminated composite tapered beams
A study of a special case of symmetric laminated composite cantilever beams is presented. The approach models beams that are tapered both in depth and width and investigates the effect of the ply layup angle and the ply taper on bending and interlaminar shearing stresses. For the determination of stresses and deflections, the beam stiffness matrices are expressed as linear functions of the beam length. Using classical lamination theory (CLT) the stiffness matrices are determined and assembled at strategic locations along the length of the beam. They are then inverted and necessary stiffness parameters are obtained numerically and extracted for determination of design information at each location chosen. Several ply layup configurations are investigated, and design considerations are presented based on the findings. Finally, recommendations for the design of these beams are presented, and a means for anticipating the location of highest stresses is offered
- …