1,438 research outputs found

    Production of gaseous and liquid bio-fuels from the upgrading of lignocellulosic bio-oil in sub- and supercritical water: effect of operating conditions on the process

    Get PDF
    This work analyses the influence of the temperature (310–450 C), pressure (200–260 bar), catalyst/biooil mass ratio (0–0.25 g catalyst/g bio-oil), and reaction time (0–60 min) on the reforming in sub- and supercritical water of bio-oil obtained from the fast pyrolysis of pinewood. The upgrading experiments were carried out in a batch micro-bomb reactor employing a co-precipitated Ni–Co/Al–Mg catalyst. This reforming process turned out to be highly customisable for the valorisation of bio-oil for the production of either gaseous or liquid bio-fuels. Depending on the operating conditions and water regime (sub/supercritical), the yields to upgraded bio-oil (liquid), gas and solid varied as follows: 5–90%, 7–91% and 3–31%, respectively. The gas phase, having a LHV ranging from 2 to 17 MJ/m3 STP, was made up of a mixture of H2 (9–31 vol.%), CO2 (41–84 vol.%), CO (1–22 vol.%) and CH4 (1–45 vol.%). The greatest H2 production from bio-oil (76% gas yield with a relative amount of H2 of 30 vol.%) was achieved under supercritical conditions at a temperature of 339 C, 200 bar of pressure and using a catalyst/bio-oil ratio of 0.2 g/g for 60 min. The amount of C, H and O (wt.%) in the upgraded bio-oil varied from 48 to 74, 4 to 9 and 13 to 48, respectively. This represents an increase of up to 37% and 171% in the proportions of C and H, respectively, as well as a decrease of up to 69% in the proportion of O. The HHV of the treated bio-oil shifted from 20 to 35 MJ/kg, which corresponds to an increase of up to 89% with respect to the HHV of the original bio-oil. With a temperature of around 344 C, a pressure of 233 bar, a catalyst/bio-oil ratio of 0.16 g/g and a reaction time of 9 min a compromise was reached between the yield and the quality of the upgraded liquid, enabling the transformation of 62% of the bio-oil into liquid with a HHV (29 MJ/kg) about twice as high as that of the original feedstock (17 MJ/kg)

    Alcachofa de Tudela, Cynara scolymus L., y suelo de cultivo analizados por Análisis Instrumental por Activación con Neutrones (INAA)

    Get PDF
    Presentamos la composición elemental analizada por Análisis Instrumental por Activación con Neutrones: a) en cada uno de los estadíos significativos del ciclo agrícola de la planta entera de alcachofa de Tudela: zuecas, planta tomada, planta en primera brotación, planta en estadío de roseta, planta en segunda brotación, planta en plena producción y zuecas obtenidas de la planta; b) en las inflorescencias de la alcachofa de Tudela en tres momentos distintos de su recolección; c) en las inflorescencias de otras tres variedades de alcachofa (INIA-D, “in vitro” y crisantem) cultivadas en Navarra; y d) en el suelo de cultivo muestreado simultáneamente con la planta y secuencialmente a lo largo del ciclo agrícola. La alcachofa se ha cultivado al aire libre en dos parcelas situadas en la Ribera Tudelana, Cadreita y Tudela. Tanto el suelo y el clima, como las técnicas culturales, son los idóneos aconsejados por el Instituto Técnico y de Gestión Agrícola y empleados desde antiguo por los agricultores de la zona. El análisis elemental se ha llevado a cabo en el Interfacultair Reactor Instituut, Technische Universiteit Delft. En total se han analizado 22 muestras vegetales y 24 muestras de suelo. Para la planta se han obtenido 486 datos de concentraciones elementales correspondientes a 29 elementos -Na, Mg, Al, Si, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Zn, Br, Rb, Sr, Cs, La, Ce, Sm, Eu, Y, Hf, Ta, W, Au y Th-; para 14 de ellos -Sc, Ti, V, Cr, Sr, Cs, La, Ce, Sm, Eu, Yb, Hf, Ta y Th- sólo se han obtenido datos de concentraciones en estadíos vegetativos, y para 2 -Al y Si- sólo en estadíos reproductores. Respecto al suelo, se han obtenido 858 datos de concentraciones elementales correspondientes a 37 elementos -Na, Mg, Al, CI, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Zn, As, Br, Rb, Sr, Zr, Ru, Sb, I, Cs, La, Ce, Nb, Sm, Eu, Tb, Dy, Yb, Lu, Hf, Ta, Au, Th y U-

    SEOM-GECP-GETTHI Clinical Guidelines for the treatment of patients with thymic epithelial tumours (2021)

    Get PDF
    Chemotherapy; Lenvatinib; Thymic epithelial tumoursQuimioterapia; lenvatinib; Tumores epiteliales tímicosQuimioteràpia; Lenvatinib; Tumors epitelials tímicsThymic epithelial tumours (TET) represent a heterogeneous group of rare malignancies that include thymomas and thymic carcinoma. Treatment of TET is based on the resectability of the tumour. If this is considered achievable upfront, surgical resection is the cornerstone of treatment. Platinum-based chemotherapy is the standard regimen for advanced TET. Due to the rarity of this disease, treatment decisions should be discussed in specific multidisciplinary tumour boards, and there are few prospective clinical studies with new strategies. However, several pathways involved in TET have been explored as potential targets for new therapies in previously treated patients, such as multi-tyrosine kinase inhibitors with antiangiogenic properties and immune checkpoint inhibitors (ICI). One third of patient with thymoma present an autoimmune disorders, increasing the risk of immune-related adverse events and autoimmune flares under ICIs. In these guidelines, we summarize the current evidence for the therapeutic approach in patients with TET and define levels of evidence for these decisions
    corecore