26 research outputs found

    Immediate effect of high-frequency yoga breathing on attention

    No full text

    Sodium silicate bonded waste foundry sand - A substitute for fine aggregates in concrete and a potential material for cement phase synthesis

    No full text
    Sodium silicate bonded Waste Foundry Sand (WFS) is being discarded by the foundries after single use. The studies so far are suggestive that the WFS after being discarded cannot be reclaimed by any physico-chemical methods and the silica transformation is within the crystal structure. Hence such sand utilisation in bulk quantity will be one of the options for managing the issue of sodium silicate bonded WFS. Recent research trend in construction materials involve utilization and blending of different industrial byproducts and waste materials to solve the environmental problems. In the present work, sodium silicate bonded WFS was used as a replacement for fine aggregates in concrete in varying percentages of 0%, 10%, 20%, 30%, 40% and 50% by weight. The 30% replacement showed better compressive strength compared to control samples. Further, these samples also passed the durability tests like rapid chloride penetration, water absorption, sorptivity, rebound hammer and ultrasonic pulse velocity. Both the strength and durability results can be attributed to the property of the sand in terms of its size, shape and its reactivity. To prove this hypothesis further fine sodium silicate bonded WFS (less than 45μm) was mixed with calcium carbonate in appropriate molar proportions. The mixture was calcined at 1400°C. This mixture was analyzed using XRD and the results revealed that alite and belite phases were generated during the reaction. This gives new dimension to utilize sodium silicate bonded WFS in concrete or as source of silica in cement industry

    Emerging Trends and Recent Progress of MXene as a Promising 2D Material for Point of Care (POC) Diagnostics

    No full text
    Two-dimensional (2D) nanomaterials with chemical and structural diversity have piqued the interest of the scientific community due to their superior photonic, mechanical, electrical, magnetic, and catalytic capabilities that distinguish them from their bulk counterparts. Among these 2D materials, two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides with a general chemical formula of Mn+1XnTx (where n = 1–3), together known as MXenes, have gained tremendous popularity and demonstrated competitive performance in biosensing applications. In this review, we focus on the cutting-edge advances in MXene-related biomaterials, with a systematic summary on their design, synthesis, surface engineering approaches, unique properties, and biological properties. We particularly emphasize the property–activity–effect relationship of MXenes at the nano–bio interface. We also discuss the recent trends in the application of MXenes in accelerating the performance of conventional point of care (POC) devices towards more practical approaches as the next generation of POC tools. Finally, we explore in depth the existing problems, challenges, and potential for future improvement of MXene-based materials for POC testing, with the goal of facilitating their early realization of biological applications

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Nanovaccines to combat drug resistance: the next-generation immunisation

    No full text
    Abstract Background The present review envisages the role of nanovaccines to combat the global challenges of antimicrobial resistance. Nanovaccines are a novel formulation comprised of nanomaterials coupled with an immunogenic component to elicit the immune response and provide protection against the desired infectious disease. The nanovaccines with unique physicochemical properties can be more efficient against targeting the desired tissues in the body, aids in prolong circulation to promote antigen-presenting cells to act upon the target antigens. Main content The present review envisages the development of nanovaccines against antimicrobial-resistant pathogens. The use of nanovaccines can exhibit potent antigenicity with prolonged retention and controlled release to induce both cell- and antibody-mediated responses. Nanovaccines usage is still in the early stages and can be next-generation immunisation for prophylactic and therapeutic efficiency. The future development of nanovaccines against multi-drug-resistant pathogens can explore new avenues. Based on these facts, the present review is designed from the previously reported scientific studies and compiled with the fact that nanovaccines can revolutionise vaccine strategies. The articles were extracted from reputed databases like PubMed, Scopus, and ESCI. The size and conjugating chemistry of nanomaterials can be beneficial in developing novel multi-nanovaccine formulations that can target pools of antimicrobial resistance mechanisms. Conclusion Overall, the nanovaccines can form one of the best effective modes of targeting multi-drug-resistant pathogens. The nanovaccines can stimulate the innate immune response and generate effective immune-therapeutic novel formulation against infectious pathogens. Based on these facts and considerations, the present article makes an alarming call to develop nanovaccines to counter multi-drug resistance

    Nanoagrosomes: Future prospects in the management of drug resistance for sustainable agriculture

    No full text
    Agriculture plays a crucial role in sustaining the global population with food safety and security. The inadequacy of current agrochemicals in effectively controlling microbial infestations necessitates immediate attention. The over usage of agrochemicals has posed significant threat to agriculture by hampering the crop productivity, increased disease outbreaks and spread resistant microorganisms. This review addresses the pressing issue of drug-resistant microbial pathogens and their detrimental impact on the agricultural system. The use of nanoagrosomes has gained significant attention as a potential solution for combating drug-resistant pathogens due to their unique physicochemical properties, which can be tailored to target specific activities. A diverse of nanoagrosomes is widely practiced to attenuate specific roles which has been outline in the review. It also shed light on their effectiveness in combating drug-resistant pathogens and their role in promoting agricultural sustainability by expanding scientific understanding of nanoagrosomes as a future prospect for management of drug resistance
    corecore