34 research outputs found
Optimality Clue for Graph Coloring Problem
In this paper, we present a new approach which qualifies or not a solution
found by a heuristic as a potential optimal solution. Our approach is based on
the following observation: for a minimization problem, the number of admissible
solutions decreases with the value of the objective function. For the Graph
Coloring Problem (GCP), we confirm this observation and present a new way to
prove optimality. This proof is based on the counting of the number of
different k-colorings and the number of independent sets of a given graph G.
Exact solutions counting problems are difficult problems (\#P-complete).
However, we show that, using only randomized heuristics, it is possible to
define an estimation of the upper bound of the number of k-colorings. This
estimate has been calibrated on a large benchmark of graph instances for which
the exact number of optimal k-colorings is known. Our approach, called
optimality clue, build a sample of k-colorings of a given graph by running many
times one randomized heuristic on the same graph instance. We use the
evolutionary algorithm HEAD [Moalic et Gondran, 2018], which is one of the most
efficient heuristic for GCP. Optimality clue matches with the standard
definition of optimality on a wide number of instances of DIMACS and RBCII
benchmarks where the optimality is known. Then, we show the clue of optimality
for another set of graph instances. Optimality Metaheuristics Near-optimal