1,227 research outputs found

    Structural health monitoring for wind turbine foundations

    Get PDF
    The construction of onshore wind turbines has rapidly been increasing as the UK attempts to meet its renewable energy targets. As the UK’s future energy depends more on wind farms, safety and security are critical to the success of this renewable energy source. Structural integrity of the tower and its components is a critical element of this security of supply. With the stochastic nature of the load regime a bespoke low cost structural health monitoring system is required to monitor integrity of the concrete foundation supporting the tower. This paper presents an assessment of ‘embedded can’ style foundation failure modes in large onshore wind turbines and proposes a novel condition based monitoring solution to aid in early warning of failure. The most common failure modes are discussed and a low-cost remote monitoring system is presented

    Phytochrome a overexpression inhibits hypocotyl elongation in transgenic Arabidopsis.

    Full text link

    Native phytochrome: Inhibition of proteolysis yields a homogeneous monomer of 124 kilodaltons from Avena

    Full text link

    Phytochrome A Regulates Red-Light Induction of Phototropic Enhancement in Arabidopsis

    Full text link

    Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes.

    Get PDF
    BAckground: Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences. Results: We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates. Conclusion: We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material

    Efficient depletion of host DNA contamination in malaria clinical sequencing.

    Get PDF
    The cost of whole-genome sequencing (WGS) is decreasing rapidly as next-generation sequencing technology continues to advance, and the prospect of making WGS available for public health applications is becoming a reality. So far, a number of studies have demonstrated the use of WGS as an epidemiological tool for typing and controlling outbreaks of microbial pathogens. Success of these applications is hugely dependent on efficient generation of clean genetic material that is free from host DNA contamination for rapid preparation of sequencing libraries. The presence of large amounts of host DNA severely affects the efficiency of characterizing pathogens using WGS and is therefore a serious impediment to clinical and epidemiological sequencing for health care and public health applications. We have developed a simple enzymatic treatment method that takes advantage of the methylation of human DNA to selectively deplete host contamination from clinical samples prior to sequencing. Using malaria clinical samples with over 80% human host DNA contamination, we show that the enzymatic treatment enriches Plasmodium falciparum DNA up to ∼9-fold and generates high-quality, nonbiased sequence reads covering >98% of 86,158 catalogued typeable single-nucleotide polymorphism loci
    corecore