6 research outputs found

    A phased array-based method for damage detection and localization in thin plates

    Get PDF
    A method for damage localization based on the phased array idea has been developed. Four arrays oftransducers are used to perform a beam-forming procedure. Each array consists of nine transducersplaced along a line, which are able to excite and register elastic waves. The A0 Lamb wave mode hasbeen chosen for the localization method. The arrays are placed in such a way that the angulardifference between them is 458 and the rotation point is the middle transducer, which is common for allthe arrays. The idea has been tested on a square aluminium plate modeled by the Spectral Element Method. Two types of damage were considered, namely distributed damage, which was modeled asstiffness reduction, and cracks, modeled as separation of nodes between selected spectral elements.The plate is excited by a wave packet. The whole array system is placed in the middle of the plate.Each linear phased array in the system acts independently and produces maps of a scanned fieldbased on the beam-forming procedure. These maps are made of time signals (transferred to spacedomain) that represent the difference between the damaged plate signals and those from the intactplate. An algorithm was developed to join all four maps. The final map is modified by proposed signal processing algorithm to indicate the damaged area of the plate more precisely. The problem fordamage localization was investigated and exemplary maps confirming the effectiveness of theproposed system were obtained. It was also shown that the response of the introduced configurationremoves the ambiguity of damage localization normally present when a linear phased array is utilized.The investigation is based exclusively on numerical data

    Effect of central and non-central frequency components on the quality of damage imaging

    Get PDF
    Accurate image reconstruction of damage through Lamb wave diffraction tomography (LWDT) requires substantial information of scatter field. This can be achieved using transducer network to collect the scatter field data. However, this requires a large number of transducers that creates logistical constraints for the practical applications of the technique. Various methods have been developed to improve the practicability of LWDT. One of the main approaches is to employ data at multiple frequencies within the bandwidth of the excitation signal. The objective of this study is to investigate the performance of using the data at non-central frequencies to reconstruct the damage image using LWDT. This provides an understanding on the influence of data at each individual frequency in the damage image reconstruction.In this paper, a series of numerical case studies with consideration of different damage sizes and shapes are carried out. Different non-central frequencies data is used to reconstruct the damage image. The results show that using the data at different non-central frequencies leads to different qualities of the reconstructed damage images. The quality of these reconstructed damage images are then compared to investigate the information contained of the data at each individual frequency. The study shows that the non-central frequencies data can provide additional information in the damage image reconstruction. Overall, the results of this study provide insights into the influences of the data at different frequencies, which is essential to advance the developments of the LWDT.Gnana Teja Pudipeddi, Ching-Tai Ng, Andrei Kotouso
    corecore