24 research outputs found

    Polaron to molecule transition in a strongly imbalanced Fermi gas

    Full text link
    A single down spin Fermion with an attractive, zero range interaction with a Fermi sea of up-spin Fermions forms a polaronic quasiparticle. The associated quasiparticle weight vanishes beyond a critical strength of the attractive interaction, where a many-body bound state is formed. From a variational wavefunction in the molecular limit, we determine the critical value for the polaron to molecule transition. The value agrees well with the diagrammatic Monte Carlo results of Prokof'ev and Svistunov and is consistent with recent rf-spectroscopy measurements of the quasiparticle weight by Schirotzek et. al. In addition, we calculate the contact coefficient of the strongly imbalanced gas, using the adiabatic theorem of Tan and discuss the implications of the polaron to molecule transition for the phase diagram of the attractive Fermi gas at finite imbalance.Comment: 10 pages, 4 figures, RevTex4, minor changes, references adde

    Dislocation-mediated melting of one-dimensional Rydberg crystals

    Full text link
    We consider cold Rydberg atoms in a one-dimensional optical lattice in the Mott regime with a single atom per site at zero temperature. An external laser drive with Rabi frequency \Omega and laser detuning \Delta, creates Rydberg excitations whose dynamics is governed by an effective spin-chain model with (quasi) long-range interactions. This system possesses intrinsically a large degree of frustration resulting in a ground-state phase diagram in the (\Delta,\Omega) plane with a rich topology. As a function of \Delta, the Rydberg blockade effect gives rise to a series of crystalline phases commensurate with the optical lattice that form a so-called devil's staircase. The Rabi frequency, \Omega, on the other hand, creates quantum fluctuations that eventually lead to a quantum melting of the crystalline states. Upon increasing \Omega, we find that generically a commensurate-incommensurate transition to a floating Rydberg crystal occurs first, that supports gapless phonon excitations. For even larger \Omega, dislocations within the floating Rydberg crystal start to proliferate and a second, Kosterlitz-Thouless-Nelson-Halperin-Young dislocation-mediated melting transition finally destroys the crystalline arrangement of Rydberg excitations. This latter melting transition is generic for one-dimensional Rydberg crystals and persists even in the absence of an optical lattice. The floating phase and the concomitant transitions can, in principle, be detected by Bragg scattering of light.Comment: 21 pages, 9 figures; minor changes, published versio

    Vison states and confinement transitions of Z2 spin liquids on the kagome lattice

    Get PDF
    We present a projective symmetry group (PSG) analysis of the spinless excitations of Z2 spin liquids on the kagome lattice. In the simplest case, vortices carrying Z2 magnetic flux ('visons') are shown to transform under the 48 element group GL(2, Z3). Alternative exchange couplings can also lead to a second case with visons transforming under 288 element group GL(2, Z3) \times D3. We study the quantum phase transition in which visons condense into confining states with valence bond solid order. The critical field theories and confining states are classified using the vison PSGs.Comment: 25 pages, 13 figure

    Quantum quench dynamics of the sine-Gordon model in some solvable limits

    Get PDF
    In connection with the the thermalization problem in isolated quantum systems, we investigate the dynamics following a quantum quench of the sine-Gordon model in the Luther-Emery and the semiclassical limits. We consider the quench from the gapped to the gapless phase as well as reversed one. By obtaining analytic expressions for the one and two-point correlation functions of the order parameter operator at zero-temperature, the manifestations of integrability in the absence of thermalization in the sine-Gordon model are studied. It is thus shown that correlations in the long time regime after the quench are well described by a generalized Gibbs ensemble. We also consider the case where the system is initially in contact with a reservoir at finite temperature. The possible relevance of our results to current and future experiments with ultracold atomic systems is also critically considered.Comment: 21 pages, no figures. To appear in New J. Phys

    Quantum quenches from integrability: the fermionic pairing model

    Full text link
    Understanding the non-equilibrium dynamics of extended quantum systems after the trigger of a sudden, global perturbation (quench) represents a daunting challenge, especially in the presence of interactions. The main difficulties stem from both the vanishing time scale of the quench event, which can thus create arbitrarily high energy modes, and its non-local nature, which curtails the utility of local excitation bases. We here show that nonperturbative methods based on integrability can prove sufficiently powerful to completely characterize quantum quenches: we illustrate this using a model of fermions with pairing interactions (Richardson's model). The effects of simple (and multiple) quenches on the dynamics of various important observables are discussed. Many of the features we find are expected to be universal to all kinds of quench situations in atomic physics and condensed matter.Comment: 10 pages, 7 figure

    Determination of the Fermion Pair Size in a Resonantly Interacting Superfluid

    Full text link
    Fermionic superfluidity requires the formation of pairs. The actual size of these fermion pairs varies by orders of magnitude from the femtometer scale in neutron stars and nuclei to the micrometer range in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in BCS-BEC crossover theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS) type superfluid of loosely bound and large Cooper pairs to Bose-Einstein condensation (BEC) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed with radio-frequency (rf) spectroscopy. Previous work was difficult to interpret due to strong and not well understood final state interactions. Here we realize a new superfluid spin mixture where such interactions have negligible influence and present fermion-pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine the spectroscopic pair size in the resonantly interacting gas to be 2.6(2)/kF (kF is the Fermi wave number). The pairs are therefore smaller than the interparticle spacing and the smallest pairs observed in fermionic superfluids. This finding highlights the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs into bound molecular states and into many-body bound states in the case of strong final state interactions.Comment: 8 pages, 7 figures; Figures updated; New Figures added; Updated discussion of fit function

    Spectral Functions and rf Response of Ultracold Fermionic Atoms

    Full text link
    We present a calculation of the spectral functions and the associated rf response of ultracold fermionic atoms near a Feshbach resonance. The single particle spectra are peaked at energies that can be modeled by a modified BCS dispersion. However, even at very low temperatures their width is comparable to their energy, except for a small region around the dispersion minimum. The structure of the excitation spectrum of the unitary gas at infinite scattering length agrees with recent momentum-resolved rf spectra near the critical temperature. A detailed comparison is made with momentum integrated, locally resolved rf spectra of the unitary gas at arbitrary temperatures and shows very good agreement between theory and experiment. The pair size defined from the width of these spectra is found to coincide with that obtained from the leading gradient corrections to the effective field theory of the superfluid.Comment: 18 pages, 7 figures, revtex 4, references update

    Quantum quenches in the anisotropic spin-1/2 Heisenberg chain: different approaches to many-body dynamics far from equilibrium

    Get PDF
    Recent experimental achievements in controlling ultracold gases in optical lattices open a new perspective on quantum many-body physics. In these experimental setups it is possible to study coherent time evolution of isolated quantum systems. These dynamics reveal new physics beyond the low-energy properties usually relevant in solid-state many-body systems. In this paper we study the time evolution of antiferromagnetic order in the Heisenberg chain after a sudden change of the anisotropy parameter, using various numerical and analytical methods. As a generic result we find that the order parameter, which can show oscillatory or non-oscillatory dynamics, decays exponentially except for the effectively non-interacting case of the XX limit. For weakly ordered initial states we also find evidence for an algebraic correction to the exponential law. The study is based on numerical simulations using a numerical matrix product method for infinite system sizes (iMPS), for which we provide a detailed description and an error analysis. Additionally, we investigate in detail the exactly solvable XX limit. These results are compared to approximative analytical approaches including an effective description by the XZ-model as well as by mean-field, Luttinger-liquid and sine-Gordon theories. This reveals which aspects of non-equilibrium dynamics can as in equilibrium be described by low-energy theories and which are the novel phenomena specific to quantum quench dynamics. The relevance of the energetically high part of the spectrum is illustrated by means of a full numerical diagonalization of the Hamiltonian.Comment: 28 page

    Repulsive polarons and itinerant ferromagnetism in strongly polarized Fermi gases

    Full text link
    We analyze the properties of a single impurity immersed in a Fermi sea. At positive energy and scattering lengths, we show that the system possesses a well-defined but metastable excitation, the repulsive polaron, and we calculate its energy, quasiparticle residue and effective mass. From a thermodynamic argument we obtain the number of particles in the dressing cloud, illustrating the repulsive character of the polaron. Identifying the important 2- and 3-body decay channels, we furthermore calculate the lifetime of the repulsive polaron. The stability conditions for the formation of fully spin polarized (ferromagnetic) domains are then examined for a binary mixture of atoms with a general mass ratio. Our results indicate that mass imbalance lowers the critical interaction strength for phase-separation, but that very short quasiparticle decay times will complicate the experimental observation of itinerant ferromagnetism. Finally, we present the spectral function of the impurity for various coupling strengths and momenta.Comment: Substantial improvements to the section describing quasiparticle decays (included a discussion of two-body and three-body processes), and to the criteria for the stability of the itinerant ferromagnetic phas

    Metastability and Coherence of Repulsive Polarons in a Strongly Interacting Fermi Mixture

    Full text link
    Ultracold Fermi gases with tuneable interactions represent a unique test bed to explore the many-body physics of strongly interacting quantum systems. In the past decade, experiments have investigated a wealth of intriguing phenomena, and precise measurements of ground-state properties have provided exquisite benchmarks for the development of elaborate theoretical descriptions. Metastable states in Fermi gases with strong repulsive interactions represent an exciting new frontier in the field. The realization of such systems constitutes a major challenge since a strong repulsive interaction in an atomic quantum gas implies the existence of a weakly bound molecular state, which makes the system intrinsically unstable against decay. Here, we exploit radio-frequency spectroscopy to measure the complete excitation spectrum of fermionic 40K impurities resonantly interacting with a Fermi sea of 6Li atoms. In particular, we show that a well-defined quasiparticle exists for strongly repulsive interactions. For this "repulsive polaron" we measure its energy and its lifetime against decay. We also probe its coherence properties by measuring the quasiparticle residue. The results are well described by a theoretical approach that takes into account the finite effective range of the interaction in our system. We find that a non-zero range of the order of the interparticle spacing results in a substantial lifetime increase. This major benefit for the stability of the repulsive branch opens up new perspectives for investigating novel phenomena in metastable, repulsively interacting fermion systems.Comment: 11 pages, 9 figure
    corecore