4 research outputs found

    Three-dimensional cathodoluminescence imaging and electron backscatter diffraction: tools for studying the genetic nature of diamond inclusions

    Get PDF
    As a step towards resolving the genesis of inclusions in diamonds, a new technique is presented. This technique combines cathodoluminescence (CL) and electron backscatter diffraction (EBSD) using a focused ion beam-scanning electron microscope (FIB-SEM) instrument with the aim of determining, in detail, the three-dimensional diamond zonation adjacent to a diamond inclusion. EBSD reveals that mineral inclusions in a single diamond have similar crystallographic orientations to the host, within ┬▒0. 4┬░. The chromite inclusions record a systematic change in Mg# and Cr# from core to the rim of the diamond that corresponds with a ~80┬░C decrease of their formation temperature as established by zinc thermometry. A chromite inclusion, positioned adjacent to a boundary between two major diamond growth zones, is multi-faceted with preferred octahedral and cubic faces. The chromite is surrounded by a volume of non-luminescent diamond (CL halo) that partially obscures any diamond growth structures. The CL halo has apparent crystallographic morphology with symmetrically oriented pointed features. The CL halo is enriched in ~200 ppm Cr and ~80 ppm Fe and is interpreted to have a secondary origin as it overprints a major primary diamond growth structure. The diamond zonation adjacent to the chromite is complex and records both syngenetic and protogenetic features based on current inclusion entrapment models. In this specific case, a syngenetic origin is favoured with the complex form of the inclusion and growth layers indicating changes of growth rates at the diamond-chromite interface. Combined EBSD and 3D-CL imaging appears an extremely useful tool in resolving the ongoing discussion about the timing of inclusion growth and the significance of diamond inclusion studies. ┬й 2010 The Author(s)

    Multiple-mineral inclusions in diamonds from the Snap Lake/King Lake kimberlite dike, Slave craton, Canada: a trace-element perspective

    No full text
    Multiple inclusions of minerals in diamonds from the Snap Lake/King Lake kimberlites of the southeastern Slave craton in Canada have been analyzed for trace elements to elucidate the petrogenetic history of these inclusions, and of their host diamonds. As observed worldwide, the harzburgitic-garnet diamond inclusions (DIs) possess sinusoidal REE patterns that indicate an early depletion event, followed by metasomatism by LREE-enriched, HREE-depleted fluids. Furthermore, these fluids appear to contain appreciable concentrations of LILE and HFSE, based on the increasing abundances of these elements in the olivine inclusion that occurs at the outer portion of a diamond compared to that near the core. The compositions of these fluids are probably a mixture of hydrous-silicic melt, carbonatitic melt, and brine, similar to the compositions of micro-inclusions in diamonds reported by Navon et al. (2003). Comparison between the compositions of majoritic and normal harzburgitic garnets shows that the former are more depleted in terms of major/minor elements (higher Cr#) but significantly more enriched in the REE (up tof10). This characteristic may indicate the higher susceptibility for metasomatic enrichment of previously more depleted garnets. Garnets of eclogitic paragenesis show strong LREE-depleted patterns, whereas the coexisting omphacite inclusion has relatively flat light and middle-REE but depleted HREE. Whole-rock reconstruction from coexisting garnet and omphacite inclusions indicates that the protolith of these inclusions was probably the extrusive section of an oceanic crust, subducted beneath the Slave craton

    Northwest Africa 011: A "eucritic" basalt from a non-eucrite parent body

    No full text
    We have carried out a detailed petrographic, mineralogical, and trace element study of Northwest Africa (NWA) 011. This meteorite bears many similarities to the eucrites it was initially identified with, although oxygen isotopic compositions rule out a genetic relationship. Like many eucrites, NWA 011 crystallized from a source with approximately chondritic proportions of REE, although a slightly LREE-enriched bulk composition with a small positive Eu anomaly, as well as highly fractionated Fe/Mg ratios and depleted Sc abundances (Korotchantseva et al. 2003), suggest that the NWA 011 source experienced some pyroxene and/or olivine fractionation. Thermal metamorphism resulted in homogenization of REE abundances within grains, but NWA 011 did not experience the intergrain REE redistribution seen in some highly metamorphosed eucrites. Despite a similarity in oxygen isotopic compositions, NWA 011 does not represent a basaltic partial melt from the acapulcoite/lodranite parent body. The material from which NWA 011 originated may have been like some CH or CB chondrites, members of the CR chondrite clan, which are all related through oxygen isotopic compositions. The NWA 011 parent body is probably of asteroidal origin, possibly the basaltic asteroid 1459 Magnya.The Meteoritics & Planetary Science archives are made available by the Meteoritical Society and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202
    corecore