21 research outputs found

    Potts Models on Feynman Diagrams

    Get PDF
    We investigate numerically and analytically Potts models on ``thin'' random graphs -- generic Feynman diagrams, using the idea that such models may be expressed as the N --> 1 limit of a matrix model. The thin random graphs in this limit are locally tree-like, in distinction to the ``fat'' random graphs that appear in the planar Feynman diagram limit, more familiar from discretized models of two dimensional gravity. The interest of the thin graphs is that they give mean field theory behaviour for spin models living on them without infinite range interactions or the boundary problems of genuine tree-like structures such as the Bethe lattice. q-state Potts models display a first order transition in the mean field for q>2, so the thin graph Potts models provide a useful test case for exploring discontinuous transitions in mean field theories in which many quantities can be calculated explicitly in the saddle point approximation.Comment: 10 pages, latex, + 6 postscript figure

    Coarse-graining schemes for stochastic lattice systems with short and long-range interactions

    Get PDF
    We develop coarse-graining schemes for stochastic many-particle microscopic models with competing short- and long-range interactions on a d-dimensional lattice. We focus on the coarse-graining of equilibrium Gibbs states and using cluster expansions we analyze the corresponding renormalization group map. We quantify the approximation properties of the coarse-grained terms arising from different types of interactions and present a hierarchy of correction terms. We derive semi-analytical numerical schemes that are accompanied with a posteriori error estimates for coarse-grained lattice systems with short and long-range interactions.Comment: 31 pages, 2 figure
    corecore