1,456 research outputs found
Spectra of primordial fluctuations in two-perfect-fluid regular bounces
We introduce analytic solutions for a class of two components bouncing
models, where the bounce is triggered by a negative energy density perfect
fluid. The equation of state of the two components are constant in time, but
otherwise unrelated. By numerically integrating regular equations for scalar
cosmological perturbations, we find that the (would be) growing mode of the
Newtonian potential before the bounce never matches with the the growing mode
in the expanding stage. For the particular case of a negative energy density
component with a stiff equation of state we give a detailed analytic study,
which is in complete agreement with the numerical results. We also perform
analytic and numerical calculations for long wavelength tensor perturbations,
obtaining that, in most cases of interest, the tensor spectral index is
independent of the negative energy fluid and given by the spectral index of the
growing mode in the contracting stage. We compare our results with previous
investigations in the literature.Comment: 11 pages, 5 figure
Covariant Bardeen Perturbation Formalism
In a previous work we obtained a set of necessary conditions for the linear
approximation in cosmology. Here we discuss the relations of this approach with
the so called covariant perturbations. It is often argued in the literature
that one of the main advantages of the covariant approach to describe
cosmological perturbations is that the Bardeen formalism is coordinate
dependent. In this paper we will reformulate the Bardeen approach in a
completely covariant manner. For that, we introduce the notion of pure and
mixed tensors, which yields an adequate language to treat both perturbative
approaches in a common framework. We then stress that in the referred covariant
approach one necessarily introduces an additional hyper-surface choice to the
problem. Using our mixed and pure tensors approach, we were able to construct a
one-to-one map relating the usual gauge dependence of the Bardeen formalism
with the hyper-surface dependence inherent to the covariant approach. Finally,
through the use of this map, we define full non-linear tensors that at first
order correspond to the three known gauge invariant variables ,
and , which are simultaneously foliation and gauge invariant. We then
stress that the use of the proposed mixed tensors allows one to construct
simultaneously gauge and hyper-surface invariant variables at any order.Comment: 15 pages, no figures, revtex4-1, accepted for publication in PRD,
typos fixed, improved discussion about higher order gauge and foliation
invarianc
Graceful exit from inflation using quantum cosmology
A massless scalar field without self interaction and string coupled to
gravity is quantized in the framework of quantum cosmology using the Bohm-de
Broglie interpretation. Gaussian superpositions of the quantum solutions of the
corresponding Wheeler-DeWitt equation in minisuperspace are constructed. The
bohmian trajectories obtained exhibit a graceful exit from the inflationary
Pre-Big Bang epoch to the decelerated expansion phase.Comment: 8 pages, RevTeX, 4 Postscript figures, uses graficx.sty. Added more
text and reference
Comments on the Quantum Potential Approach to a Class of Quantum Cosmological Models
In this comment we bring attention to the fact that when we apply the
ontological interpretation of quantum mechanics, we must be sure to use it in
the coordinate representation. This is particularly important when canonical
tranformations that mix momenta and coordinates are present. This implies that
some of the results obtained by A. B\l aut and J. Kowalski-Glikman are
incorrect.Comment: 7 pages, LaTe
Large classical universes emerging from quantum cosmology
It is generally believed that one cannot obtain a large Universe from quantum
cosmological models without an inflationary phase in the classical expanding
era because the typical size of the Universe after leaving the quantum regime
should be around the Planck length, and the standard decelerated classical
expansion after that is not sufficient to enlarge the Universe in the time
available. For instance, in many quantum minisuperspace bouncing models studied
in the literature, solutions where the Universe leave the quantum regime in the
expanding phase with appropriate size have negligible probability amplitude
with respect to solutions leaving this regime around the Planck length. In this
paper, I present a general class of moving gaussian solutions of the
Wheeler-DeWitt equation where the velocity of the wave in minisuperspace along
the scale factor axis, which is the new large parameter introduced in order to
circumvent the abovementioned problem, induces a large acceleration around the
quantum bounce, forcing the Universe to leave the quantum regime sufficiently
big to increase afterwards to the present size, without needing any classical
inflationary phase in between, and with reasonable relative probability
amplitudes with respect to models leaving the quantum regime around the Planck
scale. Furthermore, linear perturbations around this background model are free
of any transplanckian problem.Comment: 8 pages, 1 figur
- âŠ