3,307 research outputs found

    Effective fault-tolerant quantum computation with slow measurements

    Get PDF
    How important is fast measurement for fault-tolerant quantum computation? Using a combination of existing and new ideas, we argue that measurement times as long as even 1,000 gate times or more have a very minimal effect on the quantum accuracy threshold. This shows that slow measurement, which appears to be unavoidable in many implementations of quantum computing, poses no essential obstacle to scalability.Comment: 9 pages, 11 figures. v2: small changes and reference addition

    The Fibonacci scheme for fault-tolerant quantum computation

    Full text link
    We rigorously analyze Knill's Fibonacci scheme for fault-tolerant quantum computation, which is based on the recursive preparation of Bell states protected by a concatenated error-detecting code. We prove lower bounds on the threshold fault rate of .67\times 10^{-3} for adversarial local stochastic noise, and 1.25\times 10^{-3} for independent depolarizing noise. In contrast to other schemes with comparable proved accuracy thresholds, the Fibonacci scheme has a significantly reduced overhead cost because it uses postselection far more sparingly.Comment: 24 pages, 10 figures; supersedes arXiv:0709.3603. (v2): Additional discussion about the overhead cos
    • …
    corecore