6,301 research outputs found
Frequency Extraction of Current Signal Spectral Components:A New Tool for the Detection of Rotor Electrical Faults in Induction Motors
This work expands the classical current signature analysis in induction machines in a two-stage spectral decomposition manner. The proposed methodology can be summarized in two main steps: initially, the current signals are analyzed using a time frequency representation, with the analysis focusing on the steady-state regime; thereafter, frequency extraction is applied to the spectral signatures of interest, aiming to identify specific fault related harmonic subcomponents induced by the fault related speed ripple effect. The proposed approach is verified experimentally on a 4 kW induction motor
The strange-quark chemical potential as an experimentally accessible "order parameter" of the deconfinement phase transition for finite baryon-density
We consider the change of the strange-quark chemical potential in the phase
diagram of nuclear matter, employing the Wilson loop and scalar quark
condensate order parameters, mass-scaled partition functions and enforcing
flavor conservation. Assuming the region beyond the hadronic phase to be
described by massive, correlated and interacting quarks, in the spirit of
lattice and effective QCD calculations, we find the strange-quark chemical
potential to change sign: from positive in the hadronic phase - to zero upon
deconfinement - to negative in the partonic domain. We propose this change in
the sign of the strange-quark chemical potential to be an experimentally
accessible order parameter and a unique, concise and well-defined indication of
the quark-deconfinement phase transition in nuclear matter.Comment: 22 pages, 14 figures within text, 2 figures(6,B3) as separate files.
To be published in J.Phys.G: Nucl.&Part.Phys. G28 (2002
Model of Centauro and strangelet production in heavy ion collisions
We discuss the phenomenological model of Centauro event production in
relativistic nucleus-nucleus collisions. This model makes quantitative
predictions for kinematic observables, baryon number and mass of the Centauro
fireball and its decay products. Centauros decay mainly to nucleons, strange
hyperons and possibly strangelets. Simulations of Centauro events for the
CASTOR detector in Pb-Pb collisions at LHC energies are performed. The
signatures of these events are discussed in detail.Comment: 19 pages, LaTeX+revtex4, 14 eps-figures and 3 table
Agnostic Learning for Packing Machine Stoppage Prediction in Smart Factories
The cyber-physical convergence is opening up new business opportunities for
industrial operators. The need for deep integration of the cyber and the
physical worlds establishes a rich business agenda towards consolidating new
system and network engineering approaches. This revolution would not be
possible without the rich and heterogeneous sources of data, as well as the
ability of their intelligent exploitation, mainly due to the fact that data
will serve as a fundamental resource to promote Industry 4.0. One of the most
fruitful research and practice areas emerging from this data-rich,
cyber-physical, smart factory environment is the data-driven process monitoring
field, which applies machine learning methodologies to enable predictive
maintenance applications. In this paper, we examine popular time series
forecasting techniques as well as supervised machine learning algorithms in the
applied context of Industry 4.0, by transforming and preprocessing the
historical industrial dataset of a packing machine's operational state
recordings (real data coming from the production line of a manufacturing plant
from the food and beverage domain). In our methodology, we use only a single
signal concerning the machine's operational status to make our predictions,
without considering other operational variables or fault and warning signals,
hence its characterization as ``agnostic''. In this respect, the results
demonstrate that the adopted methods achieve a quite promising performance on
three targeted use cases
Performance Studies of Prototype II for the CASTOR forward Calorimeter at the CMS Experiment
We present results of the performance of the second prototype of the CASTOR
quartz-tungsten sampling calorimeter, to be installed in the very forward
region of the CMS experiment at the LHC. The energy linearity and resolution,
as well as the spatial resolution of the prototype to electromagnetic and
hadronic showers are studied with E=20-200 GeV electrons, E=20-350 GeV pions,
and E=50,150 GeV muons from beam tests carried out at CERN/SPS in 2004. The
responses of the calorimeter using two different types of photodetectors
(avalanche photodiodes APDs, and photomultiplier tubes PMTs) are compared.Comment: 16 pages, 22 figs., submitted to EPJ-
How asynchrony affects rumor spreading time
International audienceIn standard randomized (push-pull) rumor spreading, nodes communicate in synchronized rounds. In each round every node contacts a random neighbor in order to exchange the rumor (i.e., either push the rumor to its neighbor or pull it from the neighbor). A natural asynchronous variant of this algorithm is one where each node has an independent Poisson clock with rate 1, and every node contacts a random neighbor whenever its clock ticks. This asynchronous variant is arguably a more realistic model in various settings, including message broadcasting in communication networks, and information dissemination in social networks. In this paper we study how asynchrony affects the rumor spreading time, that is, the time before a rumor originated at a single node spreads to all nodes in the graph. Our first result states that the asynchronous push-pull rumor spreading time is asymptotically bounded by the standard synchronous time. Precisely, we show that for any graph G on n nodes, where the synchronous push-pull protocol informs all nodes within T (G) rounds with high probability, the asynchronous protocol needs at most time O(T (G) + log n) to inform all nodes with high probability. On the other hand, we show that the expected synchronous push-pull rumor spreading time is bounded by O(√ n) times the expected asynchronous time. These results improve upon the bounds for both directions shown recently by Acan et al. (PODC 2015). An interesting implication of our first result is that in regular graphs, the weaker push-only variant of synchronous rumor spreading has the same asymptotic performance as the synchronous push-pull algorithm
Information entropy in fragmenting systems
The possibility of facing critical phenomena in nuclear fragmentation is a
topic of great interest. Different observables have been proposed to identify
such a behavior, in particular, some related to the use of information entropy
as a possible signal of critical behavior. In this work we critically examine
some of the most widespread used ones comparing its performance in bond
percolation and in the analysis of fragmenting Lennard Jones Drops.Comment: 3 pages, 3 figure
Formation of Centauro and Strangelets in Nucleus-Nucleus Collisions at the LHC and their Identification by the ALICE Experiment
We present a phenomenological model which describes the formation of a
Centauro fireball in nucleus-nucleus interactions in the upper atmosphere and
at the LHC, and its decay to non-strange baryons and Strangelets. We describe
the CASTOR detector for the ALICE experiment at the LHC. CASTOR will probe, in
an event-by-event mode, the very forward, baryon-rich phase space 5.6 < \eta <
7.2 in 5.5 A TeV central Pb + Pb collisions. We present results of simulations
for the response of the CASTOR calorimeter, and in particular to the traversal
of Strangelets.Comment: 4 pages, 4 figures, to appear in the proceedings of the 26th ICR
Lambda^0 polarization as a probe for production of deconfined matter in ultra-relativistic heavy-ion collisions
We study the polarization change of Lambda^0's produced in ultra-relativistic
heavy-ion collisions with respect to the polarization observed in proton-proton
collisions as a signal for the formation of a Quark-Gluon Plasma (QGP).
Assuming that, when the density of participants in the collision is larger than
the critical density for QGP formation, the Lambda^0 production mechanism
changes from recombination type processes to the coalescence of free valence
quarks, we find that the Lambda^0 polarization depends on the relative
contribution of each process to the total number of Lambda^0's produced in the
collision. To describe the polarization of Lambda^0's in nuclear collisions for
densities below the critical density for the QGP formation, we use the
DeGrand-Miettinen model corrected for the effects introduced by multiple
scattering of the produced Lambda^0 within the nuclear environment.Comment: 9 pages, 6 figures, uses ReVTeX and epsfig.st
- …