16 research outputs found
PMm2: large photomultipliers and innovative electronics for the next-generation neutrino experiments
The next generation of proton decay and neutrino experiments, the
post-SuperKamiokande detectors as those that will take place in megaton size
water tanks, will require very large surfaces of photodetection and a large
volume of data. Even with large hemispherical photomultiplier tubes, the
expected number of channels should reach hundreds of thousands. A funded R&D
program to implement a solution is presented here. The very large surface of
photodetection is segmented in macro pixels made of 16 hemispherical (12
inches) photomultiplier tubes connected to an autonomous front-end which works
on a triggerless data acquisition mode. The expected data transmission rate is
5 Mb/s per cable, which can be achieved with existing techniques. This
architecture allows to reduce considerably the cost and facilitate the
industrialization. This document presents the simulations and measurements
which define the requirements for the photomultipliers and the electronics. A
proto-type of front-end electronics was successfully tested with 16
photomultiplier tubes supplied by a single high voltage, validating the
built-in gain adjustment and the calibration principle. The first tests and
calculations on the photomultiplier glass led to the study of a new package
optimized for a 10 bar pressure in order to sustain the high underwater
pressure.Comment: 1 pdf file, 4 pages, 4 figures, NDIP08, submitted to Nucl. Instr. and
Meth. Phys. Res.
Analyse radiocristallographique de quelques citrates, périodates et sélénites de sodium ou de potassium obtenus par voie aqueuse à 25° C
Périnet Guy, Bianco P., Sabbah R. Analyse radiocristallographique de quelques citrates, périodates et sélénites de sodium ou de potassium obtenus par voie aqueuse à 25° C. In: Bulletin de la Société française de Minéralogie et de Cristallographie, volume 91, 4, 1968. pp. 396-397
Repeated unidirectional introgression towards Populus balsamifera in contact zones of exotic and native poplars.
As the evolutionary significance of hybridization is largely dictated by its extent beyond the first generation, we broadly surveyed patterns of introgression across a sympatric zone of two native poplars (Populus balsamifera, Populus deltoides) in Quebec, Canada within which European exotic Populus nigra and its hybrids have been extensively planted since the 1800s. Single nucleotide polymorphisms (SNPs) that appeared fixed within each species were characterized by DNA-sequencing pools of pure individuals. Thirty-five of these diagnostic SNPs were employed in a high-throughput assay that genotyped 635 trees of different age classes, sampled from 15 sites with various degrees of anthropogenic disturbance. The degree of admixture within sampled trees was then assessed through Bayesian clustering of genotypes. Hybrids were present in seven of the populations, with 2.4% of all sampled trees showing spontaneous admixture. Sites with hybrids were significantly more disturbed than pure stands, while hybrids comprised both immature juveniles and trees of reproductive age. All three possible F1s were detected. Advanced-generation hybrids were consistently biased towards P. balsamifera regardless of whether hybridization had occurred with P. deltoides or P. nigra. Gene exchange between P. deltoides and P. nigra was not detected beyond the F1 generation; however, detection of a trihybrid demonstrates that even this apparent reproductive isolation does not necessarily result in an evolutionary dead end. Collectively, results demonstrate the natural fertility of hybrid poplars and suggest that introduced genes could potentially affect the genetic integrity of native trees, similar to that arising from introgression between natives
Complex patterns of hybridization between exotic and native North American poplar species
• Premise of the study: Poplars and their hybrids are seen as important candidates for bioenergy initiatives. However, many concerns have been raised about large-scale plantations of new poplar cultivars. The deployment of such plants with novel traits brings the risk of potential spread of novel genome regions (including exotic genes, transgenes, or other heritable modifications) into natural populations of related species. The possibility of introgression is especially high in poplars because reproductive barriers between species are weak. Knowledge of the frequency of hybridization between cultivated trees and natural populations is one important step in the risk-assessment process. • Methods: We studied the rate of spontaneous hybridization from two sexually mature poplar plantations into adjacent natural populations of Populus deltoides and P. balsamifera. The two plantations, both in eastern Canada, contain many different complex hybrid clones with components from exotic species, mostly P. nigra, P. trichocarpa, and P. maximowiczii. We analyzed 12 species-specific single nucleotide polymorphisms from six different genes in 5373 offspring sampled from the natural populations. • Results: Contributions from all three exotics were found in the offspring, confirming low reproductive barriers among poplar species in these sections. The frequency of hybrid offspring varied among pollen donors, recipient populations, and years. • Conclusions: The remarkably high rate of hybridization that was found in the smallest natural population sampled suggests that small peripheral populations carry a higher risk of introgression. These results could be used as a starting point for developing regulatory guidelines for the introduction of plants with novel traits