258 research outputs found
Recommended from our members
Molecular Regulation of Gene Expression in Chondrocytes by Inflammatory Mediators
Prostate-Specific Ets (PSE) factor: a novel marker for detection of metastatic breast cancer in axillary lymph nodes
Prostate Specific Ets factor is a recently identified transcriptional activator that is overexpressed in prostate cancer. To determine whether this gene is overexpressed in breast cancer, we performed a virtual Northern blot using data available online at the Cancer Genome Anatomy Project website. Ninety-five SAGE libraries were probed with a unique sequence tag to the Prostate Specific Ets gene. The results indicate that Prostate Specific Ets is expressed in 14 out of 15 breast cancer libraries (93%), nine out of 10 prostate cancer libraries (90%), three out of 40 libraries from other cancers (7.5%), and four out of 30 normal tissue libraries (13%). To determine the possibility that the Prostate Specific Ets gene is a novel marker for detection of metastatic breast cancer in axillary lymph nodes, quantitative real-time RT–PCR analyses were performed. The mean level of Prostate Specific Ets expression in lymph nodes containing metastatic breast cancer (n=22) was 410-fold higher than in normal lymph node (n=51). A receiver operator characteristic curve analysis indicated that Prostate Specific Ets was overexpressed in 18 out of 22 lymph nodes containing metastatic breast cancer (82%). The receiver operator characteristic curve analysis also indicated that the diagnostic accuracy of the Prostate Specific Ets gene for detection of metastatic breast cancer in axillary lymph nodes was 0.949. These results provide evidence that Prostate Specific Ets is a potentially informative novel marker for detection of metastatic breast cancer in axillary lymph nodes, and should be included in any study that involves molecular profiling of breast cancer
Polyclonal and specific antibodies mediate protective immunity against enteric helminth infection
Anti-helminth immunity involves CD4+ T cells, yet the precise effector mechanisms responsible for parasite killing or expulsion remain elusive. We now report an essential role for antibodies in mediating immunity against the enteric helminth Heligmosomoides polygyrus (Hp), a natural murine parasite that establishes chronic infection. Polyclonal IgG antibodies, present in naive mice and produced following Hp infection, functioned to limit egg production by adult parasites. Comparatively, affinity-matured parasite-specific IgG and IgA antibodies that developed only after multiple infections were required to prevent adult worm development. These data reveal complementary roles for polyclonal and affinity-matured parasite-specific antibodies in preventing enteric helminth infection by limiting parasite fecundity and providing immune protection against reinfection, respectively. We propose that parasite-induced polyclonal antibodies play a dual role, whereby the parasite is allowed to establish chronicity, while parasite load and spread are limited, likely reflecting the long coevolution of helminth parasites with their hosts
Epithelial damage and tissue γδ T cells promote a unique tumor-protective IgE response
IgE is an ancient and conserved immunoglobulin isotype with potent immunological function. Nevertheless, the regulation of IgE responses remains an enigma, and evidence of a role for IgE in host defense is limited. Here we report that topical exposure to a common environmental DNA-damaging xenobiotic initiated stress surveillance by γδTCR+ intraepithelial lymphocytes that resulted in class switching to IgE in B cells and the accumulation of autoreactive IgE. High-throughput antibody sequencing revealed that γδ T cells shaped the IgE repertoire by supporting specific variable-diversity-joining (VDJ) rearrangements with unique characteristics of the complementarity-determining region CDRH3. This endogenous IgE response, via the IgE receptor FcεRI, provided protection against epithelial carcinogenesis, and expression of the gene encoding FcεRI in human squamous-cell carcinoma correlated with good disease prognosis. These data indicate a joint role for immunosurveillance by T cells and by B cells in epithelial tissues and suggest that IgE is part of the host defense against epithelial damage and tumor development
Transcription factors and molecular epigenetic marks underlying EpCAM overexpression in ovarian cancer
BACKGROUND: The epithelial cell adhesion molecule (EpCAM) is overexpressed on carcinomas, and its downregulation inhibits the oncogenic potential of multiple tumour types. Here, we investigated underlying mechanisms of epcam overexpression in ovarian carcinoma. METHODS: Expression of EpCAM and DNA methylation (bisulphite sequencing) was determined for ovarian cancer cell lines. The association of histone modifications and 16 transcription factors with the epcam promoter was analysed by chromatin immunoprecipitation. Treatment with 5-Aza-2'-deoxycytidine (5-AZAC) was used to induce EpCAM expression. RESULTS: Expression of EpCAM was correlated with DNA methylation and histone modifications. Treatment with 5-AZAC induced EpCAM expression in negative cells. Ten transcription factors were associated with the epcam gene in EpCAM expressing cells, but not in EpCAM-negative cells. Methylation of an Sp1 probe inhibited the binding of nuclear extract proteins in electromobility shift assays; such DNA methylation sensitivity was not observed for an NF-kappa B probe. CONCLUSION: This study provides insights in transcriptional regulation of epcam in ovarian cancer. Epigenetic parameters associated with EpCAM overexpression are potentially reversible, allowing novel strategies for sustained silencing of EpCAM expression. British Journal of Cancer (2011) 105, 312-319. doi: 10.1038/bjc.2011.231 www.bjcancer.com Published online 21 June 2011 (C) 2011 Cancer Research U
- …