5 research outputs found

    Quantitative features of multifractal subtleties in time series

    Full text link
    Based on the Multifractal Detrended Fluctuation Analysis (MFDFA) and on the Wavelet Transform Modulus Maxima (WTMM) methods we investigate the origin of multifractality in the time series. Series fluctuating according to a qGaussian distribution, both uncorrelated and correlated in time, are used. For the uncorrelated series at the border (q=5/3) between the Gaussian and the Levy basins of attraction asymptotically we find a phase-like transition between monofractal and bifractal characteristics. This indicates that these may solely be the specific nonlinear temporal correlations that organize the series into a genuine multifractal hierarchy. For analyzing various features of multifractality due to such correlations, we use the model series generated from the binomial cascade as well as empirical series. Then, within the temporal ranges of well developed power-law correlations we find a fast convergence in all multifractal measures. Besides of its practical significance this fact may reflect another manifestation of a conjectured q-generalized Central Limit Theorem

    The components of empirical multifractality in financial returns

    Full text link
    We perform a systematic investigation on the components of the empirical multifractality of financial returns using the daily data of Dow Jones Industrial Average from 26 May 1896 to 27 April 2007 as an example. The temporal structure and fat-tailed distribution of the returns are considered as possible influence factors. The multifractal spectrum of the original return series is compared with those of four kinds of surrogate data: (1) shuffled data that contain no temporal correlation but have the same distribution, (2) surrogate data in which any nonlinear correlation is removed but the distribution and linear correlation are preserved, (3) surrogate data in which large positive and negative returns are replaced with small values, and (4) surrogate data generated from alternative fat-tailed distributions with the temporal correlation preserved. We find that all these factors have influence on the multifractal spectrum. We also find that the temporal structure (linear or nonlinear) has minor impact on the singularity width Δα\Delta\alpha of the multifractal spectrum while the fat tails have major impact on Δα\Delta\alpha, which confirms the earlier results. In addition, the linear correlation is found to have only a horizontal translation effect on the multifractal spectrum in which the distance is approximately equal to the difference between its DFA scaling exponent and 0.5. Our method can also be applied to other financial or physical variables and other multifractal formalisms.Comment: 6 epl page

    Long-range correlation and multifractality in Bach's Inventions pitches

    Full text link
    We show that it can be considered some of Bach pitches series as a stochastic process with scaling behavior. Using multifractal deterend fluctuation analysis (MF-DFA) method, frequency series of Bach pitches have been analyzed. In this view we find same second moment exponents (after double profiling) in ranges (1.7-1.8) in his works. Comparing MF-DFA results of original series to those for shuffled and surrogate series we can distinguish multifractality due to long-range correlations and a broad probability density function. Finally we determine the scaling exponents and singularity spectrum. We conclude fat tail has more effect in its multifractality nature than long-range correlations.Comment: 18 page, 6 figures, to appear in JSTA
    corecore