17 research outputs found
Recent advances in design and synthesis of self-adjuvanting lipopeptide vaccines
Synthetic lipopeptide vaccines are being increasingly investigated mainly because of the advantages they offer over traditional vaccines, including safety of use in humans, high specificity in eliciting immune responses, greater purity and large scale/cost-effective production capacity. Moreover, a number of lipopeptide vaccines designed to possess self-adjuvanting properties have been developed and tested in vitro and in vivo. Producing high levels of serum-specific antibodies against incorporated peptide epitopes, they are showing their potential as effective vaccine candidates without the need for a co-administered adjuvant and/or carrier protein, often associated with undesirable effects in humans. This review presents recent insights on lipopeptide vaccine research and development, particularly on (1) the influence of the orientation of peptide epitopes and lipids on immune responses, (2) the use of carbohydrates for vaccine targeting, adjuvanting or as peptide epitope carriers, and (3) synthetic approaches to highly pure, multi-epitopic vaccine molecules using native chemical ligation techniques. Incorporation of different types of antigens within the same lipopeptide construct could provide a lipopeptide vaccine candidate suitable for safe and effective mucosal administration, which is a comfortable way of drug delivery