85,885 research outputs found

    An isogeometric analysis for elliptic homogenization problems

    Full text link
    A novel and efficient approach which is based on the framework of isogeometric analysis for elliptic homogenization problems is proposed. These problems possess highly oscillating coefficients leading to extremely high computational expenses while using traditional finite element methods. The isogeometric analysis heterogeneous multiscale method (IGA-HMM) investigated in this paper is regarded as an alternative approach to the standard Finite Element Heterogeneous Multiscale Method (FE-HMM) which is currently an effective framework to solve these problems. The method utilizes non-uniform rational B-splines (NURBS) in both macro and micro levels instead of standard Lagrange basis. Beside the ability to describe exactly the geometry, it tremendously facilitates high-order macroscopic/microscopic discretizations thanks to the flexibility of refinement and degree elevation with an arbitrary continuity level provided by NURBS basis functions. A priori error estimates of the discretization error coming from macro and micro meshes and optimal micro refinement strategies for macro/micro NURBS basis functions of arbitrary orders are derived. Numerical results show the excellent performance of the proposed method

    Enhanced thermoelectric figure of merit in vertical graphene junctions

    Full text link
    In this work, we investigate thermoelectric properties of junctions consisting of two partially overlapped graphene sheets coupled to each other in the cross-plane direction. It is shown that because of the weak van-der Waals interactions between graphene layers, the phonon conductance in these junctions is strongly reduced, compared to that of single graphene layer structures, while their electrical performance is weakly affected. By exploiting this effect, we demonstrate that the thermoelectric figure of merit can reach values higher than 1 at room temperature in junctions made of gapped graphene materials, for instance, graphene nanoribbons and graphene nanomeshes. The dependence of thermoelectric properties on the junction length is also discussed. This theoretical study hence suggests an efficient way to enhance thermoelectric efficiency of graphene devices.Comment: 6 pages, 4 figures, submitte

    On the eigenfilter design method and its applications: a tutorial

    Get PDF
    The eigenfilter method for digital filter design involves the computation of filter coefficients as the eigenvector of an appropriate Hermitian matrix. Because of its low complexity as compared to other methods as well as its ability to incorporate various time and frequency-domain constraints easily, the eigenfilter method has been found to be very useful. In this paper, we present a review of the eigenfilter design method for a wide variety of filters, including linear-phase finite impulse response (FIR) filters, nonlinear-phase FIR filters, all-pass infinite impulse response (IIR) filters, arbitrary response IIR filters, and multidimensional filters. Also, we focus on applications of the eigenfilter method in multistage filter design, spectral/spacial beamforming, and in the design of channel-shortening equalizers for communications applications

    Outward Influence and Cascade Size Estimation in Billion-scale Networks

    Full text link
    Estimating cascade size and nodes' influence is a fundamental task in social, technological, and biological networks. Yet this task is extremely challenging due to the sheer size and the structural heterogeneity of networks. We investigate a new influence measure, termed outward influence (OI), defined as the (expected) number of nodes that a subset of nodes SS will activate, excluding the nodes in S. Thus, OI equals, the de facto standard measure, influence spread of S minus |S|. OI is not only more informative for nodes with small influence, but also, critical in designing new effective sampling and statistical estimation methods. Based on OI, we propose SIEA/SOIEA, novel methods to estimate influence spread/outward influence at scale and with rigorous theoretical guarantees. The proposed methods are built on two novel components 1) IICP an important sampling method for outward influence, and 2) RSA, a robust mean estimation method that minimize the number of samples through analyzing variance and range of random variables. Compared to the state-of-the art for influence estimation, SIEA is Ω(log4n)\Omega(\log^4 n) times faster in theory and up to several orders of magnitude faster in practice. For the first time, influence of nodes in the networks of billions of edges can be estimated with high accuracy within a few minutes. Our comprehensive experiments on real-world networks also give evidence against the popular practice of using a fixed number, e.g. 10K or 20K, of samples to compute the "ground truth" for influence spread.Comment: 16 pages, SIGMETRICS 201

    Importance Sketching of Influence Dynamics in Billion-scale Networks

    Full text link
    The blooming availability of traces for social, biological, and communication networks opens up unprecedented opportunities in analyzing diffusion processes in networks. However, the sheer sizes of the nowadays networks raise serious challenges in computational efficiency and scalability. In this paper, we propose a new hyper-graph sketching framework for inflence dynamics in networks. The central of our sketching framework, called SKIS, is an efficient importance sampling algorithm that returns only non-singular reverse cascades in the network. Comparing to previously developed sketches like RIS and SKIM, our sketch significantly enhances estimation quality while substantially reducing processing time and memory-footprint. Further, we present general strategies of using SKIS to enhance existing algorithms for influence estimation and influence maximization which are motivated by practical applications like viral marketing. Using SKIS, we design high-quality influence oracle for seed sets with average estimation error up to 10x times smaller than those using RIS and 6x times smaller than SKIM. In addition, our influence maximization using SKIS substantially improves the quality of solutions for greedy algorithms. It achieves up to 10x times speed-up and 4x memory reduction for the fastest RIS-based DSSA algorithm, while maintaining the same theoretical guarantees.Comment: 12 pages, to appear in ICDM 2017 as a regular pape

    Understanding requirements engineering process: a challenge for practice and education

    Get PDF
    Reviews of the state of the professional practice in Requirements Engineering (RE) stress that the RE process is both complex and hard to describe, and suggest there is a significant difference between competent and "approved" practice. "Approved" practice is reflected by (in all likelihood, in fact, has its genesis in) RE education, so that the knowledge and skills taught to students do not match the knowledge and skills required and applied by competent practitioners. A new understanding of the RE process has emerged from our recent study. RE is revealed as inherently creative, involving cycles of building and major reconstruction of the models developed, significantly different from the systematic and smoothly incremental process generally described in the literature. The process is better characterised as highly creative, opportunistic and insight driven. This mismatch between approved and actual practice provides a challenge to RE education - RE requires insight and creativity as well as technical knowledge. Traditional learning models applied to RE focus, however, on notation and prescribed processes acquired through repetition. We argue that traditional learning models fail to support the learning required for RE and propose both a new model based on cognitive flexibility and a framework for RE education to support this model

    Controlling composition factors of a finite group by its character degree ratio

    Full text link
    For a finite nonabelian group GG let \rat(G) be the largest ratio of degrees of two nonlinear irreducible characters of GG. We show that nonabelian composition factors of GG are controlled by \rat(G) in some sense. Specifically, if SS different from the simple linear groups \PSL_2(q) is a nonabelian composition factor of GG, then the order of SS and the number of composition factors of GG isomorphic to SS are both bounded in terms of \rat(G). Furthermore, when the groups \PSL_2(q) are not composition factors of GG, we prove that |G:\Oinfty(G)|\leq \rat(G)^{21} where \Oinfty(G) denotes the solvable radical of GG.Comment: 16 pages, 1 tabl
    corecore