105 research outputs found

    Should archaeologists care about 14C inter-comparisons? Why? A summary report on SIRI

    Get PDF
    Radiocarbon (14C) dating is used widely in many projects as a basis for the creation and testing of chronological constructs. 14C measurements are by their nature complex and the degree of sample pretreatment varies considerably depending on the material. Within the United Kingdom and Europe, there are a number of well-established laboratories and increasingly, archaeologists are not just commissioning new dates, but also using statistical modelling of assemblages of dates, perhaps measured in different laboratories, to provide formal date estimates for their sites. The issue of comparability of measurements (and thus bias, accuracy and precision of measurement) from the diverse laboratories is one which has been the focus of some attention both within the 14C community and the wider user communities for some time. As a result of this but also as part of laboratory benchmarking and quality assurance, the 14C community has undertaken a wide-scale, far-reaching, and evolving program of intercomparisons, to the benefit of laboratories and users alike. This paper summarizes the most recent exercise, the Sixth International Radiocarbon Intercomparison (SIRI)

    The fifth international radiocarbon intercomparison (VIRI): An assessment of laboratory performance in stage 3

    Get PDF
    Proficiency testing is a widely used, international procedure common within the analytical chemistry community. A proficiency trial (which VIRI is) often follows a standard protocol, including analysis that is typically based on zscores, with one key quantity, σp. From a laboratory intercomparison (sometimes called a proficiency trial), we hope to gain an assessment of accuracy (in this case, from dendro-dated samples), laboratory precision (from any duplicate samples), and generally, an overall measure of performance, including measurement variability and hence realistic estimates of uncertainty. In addition, given our stated aim of creating an archive of reference materials, we also gain a determination of consensus values for new reference materials. VIRI samples have been chosen to deliver these objectives and the sample ages included in the different stages, by design, spanned modern to background. With regard to pretreatment, some samples required intensive pretreatment (e.g. bone), while others required none (e.g. cellulose and humic acid). Sample size was not optimized, and indeed some samples were provided solely for accelerator mass spectrometry (AMS) measurement. In this sense, VIRI presented a more challenging exercise than previous intercomparisons, since by its design in stages, one can explore improvements (or deteriorations) over time in laboratory performance. At each stage, more than 50 laboratories have participated, with an increasing demographic shift towards more AMS and fewer radiometric laboratories

    Sources of anthropogenic C-14 to the North Sea

    Get PDF
    The Sellafield nuclear fuel reprocessing plant on the northwest coast of England is the largest source of anthropogenic radiocarbon to the UK coastal environment. In a mid-1990s study of C-14 distribution around the UK coast, the pattern of dilution with increasing distance from Sellafield appeared to be perturbed by anomalously high C-14 activities in marine biota in the coastal environment of northeast England. This present study was undertaken during 1998 and 1999 to determine whether this C-14 enhancement was due to Sellafield or the nuclear power plants on the east coast. Seawater, seaweed (Fucus sp.), and mussel (Mytilus edulis) samples that were collected from the vicinity of the Torness and Hartlepool advanced gas-cooled reactor (AGR) nuclear power stations were all enhanced above the contemporary regional background activity derived from natural production and atmospheric nuclear weapons testing. We used previously published dilution factors and transfer times for Tc-99 between Sellafield and various points on the UK coast to determine likely Sellafield- derived C-14 contributions to the activities at the nuclear power plant sites. The results suggest that the activities observed at Torness, which are only marginally enhanced above the natural background activity, are possibly due to discharges from Sellafield; however, the significant C-14 enhancements at Hartlepool are not Sellafield-derived. Furthermore, since both reactors have the same fundamental design, the low activities at the Torness AGR imply that the activities at Hartlepool are not from the AGR, suggesting that there is an input of C-14 to the marine environment in the vicinity of Hartlepool which is probably non-nuclear-power related. However, there is no other authorized site in the area that could account for the observed C-14 enrichments; therefore, further research is required to ascertain the source of this C-14

    Is there a fifth international radiocarbon intercomparison (VIRI)?

    Get PDF
    The issue of comparability of measurements (and thus bias, accuracy, and precision of measurement) from diverse laboratories is one which has been the focus of some attention both within the radiocarbon community and the wider user communities. As a result, the C-14 community has undertaken a widescale, far-reaching, and evolving program of inter- comparisons, to the benefit of laboratories and users alike. The benefit to the users is, however, indirect, since the C-14 intercomparisons have not been used to generate "league tables" of performance, but rather to allow individual laboratories to check procedures and modify them as required. The historical progression of C-14 laboratory intercomparisons from the Third (TIRI, completed in 1995, Gulliksen and Scott 1995) and Fourth (FIRI, completed in 2000, Scott 2003; Boaretto et al. 2000; Bryant et al. 2002) suggests that a Fifth (VIRI) should also be expected. We describe the plans for VIRI

    Transport of Sellafield-derived C-14 from the Irish Sea through the North Channel

    Get PDF
    Since the early 1950s, the Sellafield nuclear fuel reprocessing plant in Northwest England has released radio-carbon into the Irish Sea in a mainly inorganic form as part of its authorized liquid effluent discharge. In contrast to the trend in which the activities of most radionuclides in the Sellafield liquid effluent have decreased substantially, C-14 discharges have increased since 1994-95. This has largely been due to a policy change favoring marine discharges over atmospheric discharges. C-14 is radiologically important due to its long half life, mobility in the environment, and propensity for entering the food chain. Current models for radionuclide dispersal in the Irish Sea are based on a reversible equilibrium distribution coefficient (k(d)), an approach which has been shown to be inadequate for C-14. Development of predictive models for the fate of Sellafield-derived C-14 requires a thorough understanding of the biogeochemical fluxes between different carbon reservoirs and the processes controlling the net flux of C-14 out of the Irish Sea, through he North Channel. In this study., both an empirical and a halving time approach indicate that close to 100% of the C-14 that is discharged from Sellafield is dispersed beyond the Irish Sea on a time-scale of months in the form of DIC, with little transfer to the PIC, POC, and DOC fractions, indicating that the "dilute and disperse" mechanism is operating satisfactorily. This is consistent with previous research that indicated little transfer of C-14 to Irish Sea sediments, While significant C-14 enhancements have been observed in the biota of the Irish Sea, this observation is not necessarily in conflict with either of the above as the total biomass has to be taken into account in any calculations of C-14 retention within the Irish Sea

    High-precision radiocarbon dating of the construction phase of Oakbank Crannog, Loch Tay, Perthshire

    Get PDF
    Many of the Loch Tay crannogs were built in the Early Iron Age and so calibration of the radiocarbon ages produces very broad calendar age ranges due to the well-documented Hallstatt plateau in the calibration curve. However, the large oak timbers that were used in the construction of some of the crannogs potentially provide a means of improving the precision of the dating through subdividing them into decadal or subdecadal increments, dating them to high precision and wiggle-matching the resulting data to the master <sup>14</sup>C calibration curve. We obtained a sample from 1 oak timber from Oakbank Crannog comprising 70 rings (Sample OB06 WMS 1, T103) including sapwood that was complete to the bark edge. The timber is situated on the northeast edge of the main living area of the crannog and as a large and strong oak pile would have been a useful support in more than 1 phase of occupation and may be related to the earliest construction phase of the site. This was sectioned into 5-yr increments and dated to a precision of approximately Β±8–16 <sup>14</sup>C yr (1 σ). The wiggle-match predicts that the last ring dated was formed around 500 BC (maximum range of 520–465 BC) and should be taken as indicative of the likely time of construction of Oakbank Crannog. This is a considerable improvement on the estimates based on single <sup>14</sup>C ages made on oak samples, which typically encompassed the period from around 800–400 BC

    Learning from the wood samples in ICS, TIRI, FIRI, VIRI and SIRI

    Get PDF
    Each of the laboratory inter-comparisons (from ICS onwards) has included wood samples, many of them dendrochronologically dated. In the early years, as a result of the majority of laboratories being radiometric, these samples were typically blocks of 20-40 rings, but more recently (SIRI), they have been single ring samples. The sample ages have spanned background through to modern. In some inter-comparisons, we have examined different wood pre-treatment effects, in others the focus has been on background samples. In this paper, we illustrate what we have learnt from these extensive inter-comparisons involving wood samples and how the results contribute to the global IntCal effort

    Radiocarbon and blue optically stimulated luminescence chronologies of the Oitavos consolidated dune (Western Portugal)

    Get PDF
    The dune of Oitavos, the underlying paleosol, and Helix sp. gastropod shells found within the paleosol were dated using a combination of radiocarbon and blue optically stimulated luminescence (OSL). The organic component of the paleosol produced a significantly older age (~20,000 cal BP) than the OSL age measurement (~15,000 yr), while 14C age measurements on the inorganic component and the gastropods produced ages of ~35,000 yr and ~34,000 yr, respectively. Rare-earth element analyses provide evidence that the gastropods incorporate geological carbonate, making them an unreliable indicator of the age of the paleosol. We propose that the 14C age of the small organic component of the paleosol is also likely to be unreliable due to incorporation of residual material. The OSL age measurement of the upper paleosol (~15,000 yr) is consistent with the age for the base of the dune (~14,500 yr). The younger OSL age for the top of the dune (~12,000 yr) suggests that it was built up by at least 2 sand pulses or that there was a remobilization of material at the top during its evolution, prior to consolidation

    <sup>14</sup>C AMS at SUERC: improving QA data from the 5 MV tandem AMS and 250 kV SSAMS

    Get PDF
    In 2003, a National Electrostatics Corporation (NEC) 5MV tandem accelerator mass spectrometer was installed at SUERC, providing the radiocarbon laboratory with 14C measurements to 4–5‰ repeatability. In 2007, a 250kV single-stage accelerator mass spectrometer (SSAMS) was added to provide additional 14C capability and is now the preferred system for 14C analysis. Changes to the technology and to our operations are evident in our copious quality assurance data: typically, we now use the 134-position MC-SNICS source, which is filled to capacity. Measurement of standards shows that spectrometer running without the complication of on-line Ξ΄13C evaluation is a good operational compromise. Currently, 3‰ 14C/13C measurements are routinely achieved for samples up to nearly 3 half-lives old by consistent sample preparation and an automated data acquisition algorithm with sample random access for measurement repeats. Background and known-age standard data are presented for the period 2003–2008 for the 5MV system and 2007–2008 for the SSAMS, to demonstrate the improvements in data quality

    Is comparability of C-14 dates an issue?: A status report on the fourth international radiocarbon intercomparison

    Get PDF
    For more than 15 years, the radiocarbon community has participated in a series of laboratory intercomparisons in response to the issue of comparability of measurements as perceived within the wider user communities (Scott et al. 1990; Rozanski et al. 1992; Guiliksen and Scott 1995; Scott et al. 1997).&lt;br/&gt; In this report, we provide an update on the current C-14 laboratory intercomparison and reflect on future issues linked to the laboratory intercomparison program, not least those resulting from a significant growth in the number of accelerator mass spectrometry (AMS) facilities providing routine dating of small samples (milligram size)
    • …
    corecore